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Abstract. This paper provides an overview of recent research efforts for
digital media analysis and description. It focuses on the specific problem
of human centered video analysis for activity and identity recognition in
unconstrained environments. For this problem, some of the state-of-the-
art approaches for video representation and classification are described.
The presented approaches are generic and can be easily adapted for the
description and analysis of other semantic concepts, especially those that
involve human presence in digital media content.
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1 Introduction

Recent advances in technological equipment, like digital cameras, smart-phones,
etc., have led to an increase of the available digital media, e.g., videos, captured
every day. Moreover, the amount of data captured for professional media produc-
tion (e.g., movies, special effects, etc) has dramatically increased and diversified
using multiple sensors (e.g., 3D scanners, multi-view cameras, very high qual-
ity images, motion capture, etc), justifying the digital media analysis as a big
data analysis problem. As expected, most of these data are acquired in order
to describe human presence and activity and are exploited either for monitoring
(visual surveillance and security) or for personal use and entertainment. Basic
problems in human centered media analysis are face recognition, facial expression
recognition and human activity recognition. According to YouTube statistics1,
100 hours of video are uploaded by the users every minute. Such a data growth,
as well as the importance of visual information in many applications, has ne-
cessitated the creation of methods capable of automatic processing and decision
making when necessary. This is why a large amount of research has been devoted
in the analysis and description of digital media in the last two decades.

In this paper a short overview on recent research efforts for digital media
analysis and description using computational intelligence methods is given. Com-
putational intelligence methods are very powerful in analyzing, representing and

1 http://www.youtube.com/yt/press/statistics.html
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classifying digital media content through various architectures and learning al-
gorithms. Supervised, unsupervised and semi-supervised algorithms can be used
for digital media feature extraction, representation and characterization. The
specific problem that will be used as a case study for digital media analysis is
the human-centered video analysis for activity and identity recognition. These
two problems have received considerable research study in the last two decades
and numerous methods have been proposed in the literature, each taking into
account several aspects of the problem, relating to the application scenario un-
der consideration. In this paper, we focus on the recognition of human activities
in unconstrained environments, a problem which is usually referred to as human
action recognition in the wild.

A pipeline, that most of the methods proposed in the literature follow, con-
sists of two processing steps, as illustrated in Figure 1. In the first step, a process
aiming at the determination of a video representation that, hopefully, preserves
information facilitating action discrimination, is performed. In the second step,
the previously calculated video representations are employed for action discrim-
ination. These two processing steps are, usually, applied to a set of (annotated)
videos, forming the so-called training video database. After training, a new (un-
known) video can be introduced to the method and classified to one of the known
classes appearing in the training video database. In the following sections, we
describe some of the most successful and effective approaches that have been
proposed for the two aforementioned processing steps.

Fig. 1: Action recognition and person identification pipelineL.

2 Problem Statement

Before describing the various approaches proposed for video representation and
classification, we provide an overview of the problem. Let us assume that the
training video database U consists of NT videos depicting persons performing
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actions. Such videos will be noted as action videos hereafter. We employ the
different actions appearing in U in order to form an action class set A. Similarly,
the persons appearing in U are employed in order to form a person ID class set
P. Let us assume that the NT action videos have been manually annotated, i.e.,
they have been characterized according to the performed action and/or the ID
of the persons appearing in them. Thus, they are followed by an action class
and a person ID label, αi and hi, i = 1, . . . , NT , respectively. We would like to
employ the videos in U , and the corresponding labels αi, hi in order to train an
algorithm that will be able to automatically perform action recognition and/or
person identification, i.e., to classify a new (unknown) video to an action and/or
person ID class appearing in the action class set A and/or the person ID class
set P, respectively.

(a) (b)

Fig. 2: Local video locations of interest: a) STIPs and b) video frame interest
points tracked in consecutive video frames.

3 Action Video Representation

Video representations proposed for action recognition and person identification
problems exploit either global body information, e.g. binary silhouettes corre-
sponding to the human body video locations [1–3], or shape and motion informa-
tion appearing in local video locations of interest [4–6]. In the first case, videos
are usually described by sets of binary images depicting the human body silhou-
ettes during action execution. Such silhouettes are obtained by applying video
frame segmentation techniques, like background subtraction or chroma keying.
Due to this preprocessing step, such representations set several assumptions, like
a relatively simple background and static cameras. However, such requirements
are unrealistic in most cases. For example, most of the videos uploaded in video
sharing websites (like Youtube) have been recorded by non-experts (users) in
scenes containing cluttered backgrounds by using moving cameras. Another ex-
ample can be given for movie productions, where the leading actor may perform
an action in a scene containing several extras performing the same or different
action.
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Video representations belonging to the second category are able to operate
in the above mentioned cases, since they are evaluated directly on the color
(grayscale) video frames and do not require video segmentation. Perhaps the
most successful and effective local video representations have been designed
around the Bag of Features model. According to this model, a video is rep-
resented by one or multiple vectors denoting the distribution of local shape
and/or motion descriptors. These descriptors are calculated on local video lo-
cations corresponding either to Space Time Interest Points (STIPs) [7], or to
video frame interest points that are tracked in successive video frames [5, 6], or
to video frame pixels belonging to a pre-defined grid [8]. Example video frame
locations of interest belonging to the first two categories are illustrated in Figure
2. STIPs determination is usually performed by applying extended versions of
interest point detectors, like the Harris and Hessian ones.

The adopted descriptor types may be either handcrafted, or learned directly
from data. Popular handcrafted descriptors include the Histogram of Oriented
Gradients (HOG), the Histogram of Optical Flow (HOF) [9], the Motion Bound-
ary Histogram (MBH) [5] and the Relative Motion Descriptor (RMD) [10]. Re-
garding data derived video representations exploiting local video information,
a popular choice is to use overlapping 3D blocks, where the third dimension
refers to time, in order to learn representative 3D blocks (filters) describing lo-
cal shape and motion information. This is achieved by applying Deep Learning
techniques, like the Independent Subspace Analysis (ISA) algorithm which has
been proposed in the context of human action recognition [8]. Example filters
learned by applying ISA on video frames depicting traditional Greek dances are
illustrated in Figure 3.

Since the above mentioned descriptors contain complementary information,
multiple descriptor types are usually employed for video representation. Let us
denote by xd

ij , j = 1, . . . , Ni, d = 1, . . . , D the descriptors (of type d) calculated
for the i-th video in U . D is the number of adopted descriptor types. We employ
xd
ij , i = 1, . . . , NT , j = 1, . . . , Ni in order to determine a set of Kd descriptor

prototypes forming the so-called codebook. This is achieved by clustering xd
ij ,

usually applying theK-Means algorithm [11], inKd clusters and using the cluster
mean vectors vd

k, k = 1, . . . ,Kd as codebook vectors. After the determination of
vd
k, each video is represented by D vectors obtained by quantizing xd

ij according

to vd
k. We denote by sdi ∈ RKd the D vectors representing action video i. We

would like to employ the action vectors sdi and the class labels αi, hi in order to
train a classifier that will be able to automatically classify action videos to one
of the classes appearing in A and/or P.

Fig. 3: Filters learned by the ISA algorithm when trained on video frames depict-
ing traditional Greek dances.
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4 Action Video Classification

After applying the above described process, each action video in U is represented
by D vectors sdi . By employing sdi , i = 1, . . . , l and the corresponding class labels
αi (hi), supervised learning techniques can be employed in order to discrimi-
nate the classes appearing in A (P). This is usually achieved by training NA

(NP ) nonlinear Support Vector Machine (SVM) classifiers in an one-versus-rest
scheme. In order to fuse the information captured by different descriptor types
d, a multi-channel RBF-χ2 kernel function is used, which has been shown to
outperform other kernel function choices in BoF-based classification [12]:

[K]i,j = exp

(
− 1

Ad

Kd∑
k=1

(sdik − sdjk)
2

sdik + sdjk

)
. (1)

Ad is a parameter scaling the χ2 distances between the d-th action video repre-
sentations and is set equal to the mean χ2 distance between the training vectors
sdi .

Except SVM classifiers, Neural Networks (NNs) have been proven effective
for the classification of action videos. Single-hidden Layer Feedforward Neural
(SLFN) networks have been adopted for action recognition and person identi-
fication in [13–16]. A SLFN network consists of Kd input (equal to the dimen-
sionality of sdi ), L hidden and NA (NP ) (equal to the number of classes forming
the classification problem) output neurons. In order to perform fast and efficient
network training, the Extreme Learning Machine (ELM) algorithm has been
employed in [14]. Typically, D NNs are trained, each for a different action video
representation d, and network output combination is subsequently performed.

In ELM, the network’s input weights Wd
in and the hidden layer bias values

b are randomly assigned, while the output weights Wd
out are analytically calcu-

lated. Let us denote by vj the j-th column of Wd
in and by wk the k-th column

of Wd
out. For a given activation function Φ(·), the output od

i = [od1, . . . , o
d
NA

]T of
the ELM network corresponding to training action vector si is calculated by:

odik =
L∑

j=1

wT
k Φ(vj , bj , s

d
i ), k = 1, ..., NA. (2)

By storing the hidden layer neurons outputs in a matrix Φd, i.e.:

Φ =

 Φ(v1, b1, s
d
1) · · · Φ(v1, b1, s

d
NT

)

· · ·
. . . · · ·

Φ(vL, bL, s
d
1) · · · Φ(vL, bL, s

d
NT

)

 , (3)

Equation (2) can be written in a matrix form as Od = Wd T
outΦd. Finally, by

assuming that the network’s predicted outputs Od are equal to the network’s
desired outputs, i.e., od

i = ti, and using linear activation function for the output

neurons, Wd
out can be analytically calculated by Wd

out = Φ†
d TT , where Φ†

d =
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ΦdΦ

T
d

)−1
Φd is the Moore-Penrose generalized pseudo-inverse of ΦT

d and T =
[t1, . . . , tNT ] is a matrix containing the network’s target vectors.

A regularized version of the ELM algorithm has, also, been used in [13, 15].
According to this, the network output weights Wout are calculated by solving
the following optimization problem:

Minimize: LP =
1

2
∥Wd T

out∥F +
c

2

NT∑
i=1

∥ξi∥22 (4)

Subject to: ϕd T
i Wd

out = tTi − ξTi , i = 1, ..., NT , (5)

where ξi is the training error vector corresponding to action vector sdi , ϕ
d
i denotes

the i-th column of Φd, i.e., the sdi representation in the ELM space, and c is a
parameter denoting the importance of the training error in the optimization
problem. By substituting the condition (5) in (4) and solving for ϑLP

ϑWd
out

= 0,

Wd
out can be obtained by:

Wd
out =

(
ΦdΦ

T
d +

1

c
I

)−1

ΦdT
T , (6)

or

Wd
out = Φd

(
ΦT

d Φd +
1

c
I

)−1

TT . (7)

where I is the identity matrix.

Exploiting the fact that the ELM algorithm can be considered to be a non-
linear data mapping process to a high dimensional feature space followed by
linear projection and classification, the Minimum Variance ELM (MVELM) and
the Minimum Class Variance ELM (MCVELM) algorithms have been proposed
in [16, 17] for action recognition. These two algorithms aim at simultaneously
minimizing the network output weights norm and (within-class) variance of the
network outputs. The network output weights Wd

out are calculated by solving
the following optimization problem:

Minimize: LP =
1

2
∥S1/2

d Wd T
out∥F +

c

2

NV∑
i=1

∥ξi∥22 (8)

Subject to: ϕd T
i Wd

out = tTi − ξTi , i = 1, ..., NT , (9)

and the network output weights are given by:

Wd
out =

(
ΦdΦ

T
d +

1

c
Sd

)−1

ΦdT
T . (10)

Sd in (8), (10) is either the within-class scatter matrix Sd
w of the network hidden

layer outputs, i.e., the representation of sdi in the so-called ELM space, or the
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total scatter matrix Sd
T in the ELM space. In the case of unimodal action classes

in the ELM space, Sd
w is of the form:

Sd
w =

NA∑
j=1

NT∑
i=1

βij

Nj
(ϕd

i − µd
j )(ϕ

d
i − µd

j )
T . (11)

In (11), βij is an index denoting if training action vector sdi belongs to action class

j, i.e., βij = 1, if ci = j and βij = 0 otherwise, and Nj =
∑NT

i=1 βij is the number

of training action vectors belonging to action class j. µd
j = 1

Nj

∑NT

i=1 βijϕ
d
i is the

mean vector of class j in the ELM space.
In the case of multi-modal action classes, Sw is of the form:

Sd
w,CDA =

NA∑
j=1

bj∑
k=1

NT∑
i=1

βijk(ϕ
d
i − µd

jk)(ϕ
d
i − µd

jk)
T

Njk
. (12)

Here, it is assumed that class j consists of bj clusters, containing Njk, j =
1, ..., NA, k = 1, ..., bj action vectors each. βijk is an index denoting if action

vector sdi belongs to the k-th cluster of action class j and µd
jk = 1

Njk

∑NT

i=1 βijkϕ
d
i

denotes the mean vector of the k-th cluster of class j in the ELM space.
Finally, ST is given by:

Sd
T =

NT∑
i=1

(ϕd
i − µd)(ϕd

i − µd)T , (13)

where µd = 1
NT

∑NT

i=1 ϕ
d
i is the vector of the entire training set in the ELM

space.
The information captured by different descriptor types is fused either by com-

bining the network outputs corresponding to different descriptor types, e.g., by
calculating the mean network output, or by optimally weighting the contribution
of each NN according to combination weights γ ∈ RD by solving the following
optimization problem:

Minimize: J =
1

2

D∑
d=1

∥Wd
out∥2F +

c

2

N∑
i=1

∥ξi∥22 (14)

Subject to:

(
D∑

d=1

γdW
d T
outϕ

d
i

)
− ti = ξi, i = 1, ..., N, (15)

∥γ∥22 = 1, (16)

An iterative optimization process consisting of two convex optimization problems
has been proposed in [18] to this end.

By exploiting the fast and efficient ELM algorithm for SLFN network train-
ing, a dynamic classification scheme has been proposed for human action recog-
nition in [19]. It consists of two iteratively repeated steps. In the first step, a
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non-linear mapping process for both the training action vectors and the test
sample under consideration is determined by training a SLFN network. In the
second step, test sample-specific training action vectors selection is performed
by exploiting the obtained network outputs corresponding to both the training
action vectors and the test sample under consideration. These two steps are
performed in multiple levels. At each level, by exploiting only the more simi-
lar to the test sample training action vectors, the dynamic classification scheme
focuses the classification problem on the classes that should be able to discrim-
inate. Considering the fact that after performing multiple data selections for a
level l > 1 the cardinality of the training action vector set that will be used for
SLFN network training will be very small compared to the dimensionality of the
ELM space, the regularized version of ELM algorithm (6) has been employed in
[21]. By using (7), the network output vector corresponding to sdi is obtained by:

od
i = Wd T

out ϕ
d
i = T

(
Ωd +

1

c
I

)−1

Kd
i , (17)

where Kd
i = ΦT

d ϕ
d
i , Ωd = ΦT

d Φd are the kernel matrices corresponding to sdi
and the entire SLFN training set, respectively. Thus, in this case the ELM space
dimensionality is inherently determined by exploiting the kernel trick [24] and
needs not be defined in advance. This ELM network training formulation also has
the advantage that combined kernel matrices of the form (1) can be exploited.

The semi-supervised ELM (SELM) algorithms [23] has also been proposed
for dynamic action classification in [22]. SELM solves the following optimization
problem:

Minimize: J = ∥Wd T
outΦd −T∥F (18)

Subject to:

NT∑
i=1

NT∑
j=1

wij

(
Wd T

outϕ
d
i −Wd T

outϕ
d
j

)2
= 0, (19)

where wij is a value denoting the similarity between ϕd
i and ϕd

j . W
d
out is given

by:

Wd
out =

((
J+ λLT

d

)
Φ
)†

JTT , (20)

where J = diag(1, 1, . . . , 0, 0) with the first l diagonal entries as 1 and the rest 0
and Ld is the Graph Laplacian matrix [20] encoding the similarity between the
training vectors ϕd

i .
In the dynamic classification scheme proposed in [22], test sample-specific

training action vectors selection is performed by calculating the Euclidean dis-
tances between a given test sample and the training action vectors. The l training
action vectors closest to the test sample are employed in order to form the labeled
set of the SELM algorithm, while the remaining ones are used as unlabeled. Fi-
nally, the test sample under consideration is classified to the class corresponding
to the highest SELM output.

Experimental results in real video data using all the previously presented
methods can be found in the corresponding references. The results indicate that
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computational intelligence techniques can be used for solving difficult tasks, such
as video analysis and semantic information extraction in digital media.

5 Conclusion

In this paper a survey on recent research efforts for digital media analysis and
description based on computational intelligence methods has been presented.
The specific problem that has been used as a case study is the human centered
video analysis for activity and identity recognition. The presented approaches
are generic and can be easily adapted for the description and analysis of other
semantic concepts, especially those that involve human presence in digital media
content.
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