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Abstract—In this paper, we elaborate on mobile phone iden-
tification from recorded speech signals. The goal is to extract
intrinsic traces related to the mobile phone used to record a
speech signal. Mel frequency cepstral coefficients (MFCCs) are
extracted from any recorded speech signal at a frame level. The
sequences of the MFCC vectors extracted from each recording
device train a Gaussian Mixture Model with diagonal covariance
matrices. A Gaussian supervector is derived by concatenating the
mean vectors and the main diagonals of the covariance matrices
that is used as a template for each device. Experiments were
conducted on a database of 21 mobile phones of various models
from 7 different brands. The aforementioned database, that is
called MOBIPHONE, was collected by recording 10 utterances,
uttered by 12 male speakers and another 12 female speakers,
randomly chosen from the TIMIT database. Three commonly
used classifiers were employed, such as Support Vector Machines
with different kernels, a Radial Basis Functions neural network,
and a Multi-Layer Perceptron. The best identification accuracy
(97.6%) was obtained by the Radial Basis Functions neural
network.

Index Terms—Digital speech forensics, Gaussian supervectors,
Support vector machines, Radial basis functions neural network,
Multi-layer perceptron

I. INTRODUCTION

Speech is the most natural way to communicate between
humans. Nowadays, low cost and sophisticated mobile phones
are widespread in the society, being an indispensable commu-
nication apparatus. Mobile phones receive, transmit, store, and
process information in digital form. This means that there will
be lots of evidence in the speech signals recorded by mobile
phones. A valuable step in digital speech forensics is phone
identification, reviewed next.

First of all, one needs to extract forensic evidence about the
mechanism involved in the generation of the speech recording
by analyzing the speech signal [1]. That is, to identify the
acquisition device by assuming that the device along with
its associated signal processing chain leaves behind intrinsic
traces in the speech signal. Indeed, the various devices (e.g.,
telephone handsets, mobile phones) do not have exactly the
same frequency response due to the tolerance in the nominal
values of the electronic components and the different designs
employed by the various manufacturers [2]. This implies that
the recorded speech can be considered as a signal whose
spectrum is the product of the genuine speech spectrum,

driving the acquisition device, and the frequency response of
the latter. Consequently, the recorded speech signal can be
exploited in device identification, following a blind-passive
approach, as opposed to active embedding of watermarks or
having access to input-output pairs [1].

Although there is a long way for making acceptable the au-
dio forensics in the court and in that respect audio forensics are
lacking behind the image forensics [3], the research on audio
forensics has blossomed the last years. Several problems have
attracted the interest of the forensics community, including
codec identification, authentication of speakers’ environment,
identification of the device power source (i.e, electric network
frequency (ENF)), identification of the network traversed,
and automatic acquisition device identification, so far. Many
studies were performed for the identification of codecs, such
as MP3 [4], Windows Media Audio codec [5], Code Excited
Linear Prediction codecs [6], or G.711, G.726, G.728, G.729,
Internet Low-Bit codec, Adaptive Multi-Rate NarrowBand,
and Silk [7]. Classification and regression trees were reported
to achieve an identification accuracy of 92% among nine
codecs using a 50% cross-validation on a database with 180
test conditions, comprising three noise types (car, babble and
hum) at five signal to noise ratios [8]. The authentication of
speakers’ environment was investigated in [9]–[12]. The effec-
tiveness of Hidden Markov Model-based phone recognition
for forensic voice comparison has been evaluated in terms
of both validity (accuracy) and reliability (precision) in [13].
Acoustic environment identification finds many applications
(e.g., audio recording integrity authentication, real-time crime
localization/identification). Statistical techniques for estimat-
ing the reverberation and background noise were proposed
in [14], [15]. ENF-based techniques offer high accuracy, but
they suffer from the fact that the ENF signal cannot be always
extracted reliably at a frame level [16], [17]. The identification
of the call origin determines whether the call traversed a
cellular, a VoIP, or a PSTN network [18].

Telephone handset identification was first treated in order
to avoid performance degradation in speaker recognition due
to mismatches between training and test data. For example,
autoassociative neural networks were reported to achieve an
accuracy of 85% in a two-class problem (i.e., carbon-button
vs. electret telephone handset identification) in the NIST-99



speaker evaluation database, employing 1448 test utterances
[19]. A Gaussian mixture model-based handset selector was
proposed in [20] and then handset-specific stochastic second-
order feature transformations were applied to the distorted fea-
ture vectors increasing speaker verification accuracy. Another
method for the classification of 4 microphones was originally
proposed in [10] and further improved thanks to a proper
fusion strategy [11]. The speech signal was parameterized
by employing time domain features and the mel-frequency
cepstral coefficients (MFCCs) [21]. The identification of the
microphones was performed by the Naive Bayes classifier
at a short-time frame level. Accuracies in the order of 60–
75% were reported. Rank level fusion was shown to increase
the classification accuracy to 100% [11]. The identification
of 8 landline telephone handsets and 8 microphones was
addressed in [1]. In particular, the intrinsic characteristics of
the device were captured by concatenating the mean vectors
of a Gaussian mixture model (GMM) trained on the speech
recordings of each device. Linear- and mel-scaled cepstral
coefficients were employed for speech signal representation.
A classification accuracy of 93.2% was reported for 8 landline
telephone handset identification in the Lincoln-Labs Handset
Database (LLHDB) [22], when a support vector machine
(SVM) classifier and a 2-fold cross-validation was employed.
The identification of 14 mobile phones was proposed in [2]
extracting the MFCCs from each device speech recordings,
which were then classified by an SVM. An identification ac-
curacy of 96.42% was reported for 14 different mobile phones
using a set of 3360 utterances uttered by 24 speakers equally
divided into a training and test set. Blind-passive methods for
landline telephone handset identification were proposed in [23]
and [24]. More specifically, the random spectral features were
extracted by reducing the size of average log-spectrograms
thanks to an orthogonal random Gaussian projection matrix
[23]. In a supervised setting, the label information (i.e., the
class where each device belongs to) of the training speech
recordings was taken into account in order to derive a mapping
between the feature space where the average log-spectrograms
lie onto and the label space [24]. This supervised method
reached an accuracy of 97.58% in the LLHDB. The blind-
passive method for landline telephone handset identification
introduced in [23] was extended by investigating the sketches
of spectral features (SSFs) as intrinsic traces suitable for
device identification in [25].

Here, the identification of mobile phones of various brands
and models from recorded speech is addressed. Brand refers
to the manufacturer of a mobile phone, e.g., LG, Samsung,
etc. The term model refers to the product series within
a brand, e.g., LG L9, Samsung Galaxy Nexus S, and so
on. To do so, intrinsic traces related to the device used in
speech signal acquisition should be derived by modeling the
MFCCs that are extracted from any recorded speech signal
at a frame level. The MFCCs have been dominantly used
in speech recognition, speaker recognition, and acquisition
device identification despite the fact that the aforementioned
tasks seek different types of information. They encode the

frequency content of the signal by parameterizing the rough
shape of its spectral envelope. Starting with the short-term
power spectrum of the speech signal, discrete cosine transform
is applied to the log power spectrum at the output of a filter
bank in a nonlinear mel-warped frequency scale. We resort to
GMMs with diagonal covariance matrices in order to model
the probability density function of the MFCC vectors. Having
training a GMM for each device, a Gaussian supervector
(GSV) is built by concatenating the mean vectors and the main
diagonals of the covariance matrices of all components. The
GSVs are extracted without resorting to a GMM universal
background model [26] and are used as recording device tem-
plates. A database of 21 mobile phones of various models from
7 different brands was collected by recording 10 utterances,
uttered by 12 male speakers and another 12 female speakers,
randomly chosen from the TIMIT database [27]. Let us call
this database MOBIPHONE, hereafter. Experiments were con-
ducted on the MOBIPHONE by employing three commonly
used classifiers, such as SVMs with different kernels, a Radial
Basis Functions neural network (RBF-NN), and a Multi-Layer
Perceptron (MLP). The top identification accuracy of 97.6%
was achieved by the RBF-NN.

The main contribution of the paper is in the disclosure
of experimental evidence for mobile phone identification,
employing the aforementioned classifier and the release of
the MOBIPHONE database that is made publicly available.
The rest of the paper is organized as follows. In Section 2,
an overview of the identification system is presented. Feature
extraction is detailed in Section 3. The MOBIPHONE database
is described in Section 4. Experimental results are disclosed
in Section 5 and conclusions are drawn in Section 6.

II. MOBILE PHONE IDENTIFICATION

A mobile phone identification system consists of three mod-
ules: feature extraction, feature modeling, and the classifier.
Feature extraction is the process of extracting information
related to the acquisition device that the recorded speech
signals bear. Here, this information is captured by the MFCCs.
Modeling aims at deriving a parametric model for the proba-
bility density function of the MFFC vectors, i.e., a GMM. The
model parameters are the mixture weights, the mean vectors,
and the diagonal covariance matrices. The mean vectors and
the main diagonals of the covariance matrices are exploited to
build the GSVs. The GSVs are split into a training and a test
set. The training set is used to train the classifier, while the
test set is used to assess the classifier performance. The entire
processing chain is depicted in Figure 1. Feature modeling and
classifier are referred collectively as similarity measure.

III. FEATURE EXTRACTION

The underlying hypothesis is that the mobile phones leave
behind intrinsic traces in the speech signal. These traces can
be modeled and detected by pattern recognition techniques [1].
As said previously, the MFCCs are extracted from recorded
speech signals. Let us elaborate on the appropriateness of
the MFCCs for acquisition device characterization. Assume



Fig. 1. Mobile phone identification recognition system.

that a mobile phone is a linear time-invariant system with
impulse response h[n]. If x[n] is the speech signal uttered by
a speaker, the recorded speech signal by the device y(n) is
the convolution of x[n] with the impulse response, i.e.,

y[n] = (h ∗ x)[n]. (1)

Because the speech is not a stationary signal, it is divided into
overlapped segments of duration 20 ms with a hop size of
10 ms, known as frames. The speech frames are obtained by
multiplying the speech signal with a Hamming window. Then
the pth frame of the recorded speech signal is given by

yp[n] = (x[n] w[pN − n]) ∗ h[n] (2)

where the term inside parentheses is identified as the pth frame
of the speech signal and w[pN − n] denotes the window
ending at the sample pN , N being the window length. Since
the identity of the recording mobile phone is embedded into
the recorded signal through a convolution, cepstrum looks
appropriate to separate the intrinsic trace left in the recorded
signal by the acquisition device [28]. Taking the discrete-time
Fourier transform of both sides of (2), we obtain

Yp(f) = F {x[n] w[pN − n]} H(f) (3)

where F{·} denotes the discrete-time Fourier transform,
Yp(f) = F{yp[n]}, and H(f) = F{h[n]} is the frequency
response of the mobile phone. (3) can be written as

Yp(f) =

[∫ 1

0

X(θ)Wp(θ − f) dθ

]
H(f) (4)

where Wp(f) = F {w[pN − n]}. Using the properties of the
discrete-time Fourier transform

w[−n] F←→ W ∗(−f) (5)

w[n− n0]
F←→ e−j 2π fn0 W (f) (6)

and substituting into (4) we arrive at

Yp(f) =

[∫ 1

0

X(θ)W ∗(θ − f) ej2π(θ−f)pN dθ

]
H(f). (7)

Let us denote the integral in (7) by X̃p(f). The discrete-time
Fourier transform X(f) is expressed as the product of the

discrete-Fourier transform of the excitation signal E(f) and
the frequency response of the vocal tract V (f). By invoking
the arguments in [28], X̃p(f) can be approximated as

X̃p(f) =

∫ 1

0

E(θ)V (θ)W ∗(θ−f)ej2π(θ−f)pNdθ ≈ Ep(f)V (f)

(8)
where Ep(f) = F{e[n]w[pN − n]} denotes the discrete-time
Fourier transform of the pth frame of the excitation signal.
The substitution of (8) into (7) yields

Yp(f) = Ep(f) V (f)H(f). (9)

That is, it has been proved that the recording by a mobile
phone leaves behind an intrinsic trace in the recorded speech
spectrum.

Proceeding to the mel cepstrum, it is interesting to note
that the MFCCs have been the baseline features for speech
recognition or speaker verification (i.e., deconvolution of V (f)
in (9)), speech emotion recognition (i.e., deconvolution of
Ep(f) in (9)), and device acquisition (i.e., deconvolution of
H(f) in (9)). The MFCC calculation employs frames of
duration 20 ms with a hop size of 10 ms, and a 42-band
filter bank. The correlation between the frequency bands is
reduced by applying the discrete cosine transform to the log-
energies of the bands. Sequences of 23-dimensional MFCCs
are extracted per frame. The histogram of the 5th MFCC for
different mobile phones and the same recorded speech signal is
plotted in Figure 2. It is self-evident that the histograms differ
across the various mobile phone brands and models. Having
extracted a sequence of 23-dimensional MFCC vectors for all
frames of recorded speech utterances by each mobile phone, a
GMM was trained by means of the Expectation-Maximization
algorithm [29].

IV. MOBIPHONE DATABASE

The MOBIPHONE database contains 21 mobile phones
of various models from 7 different brands. The brands and
models of the mobile phones are listed in Table I. The 7
different brands include some of the major companies in the
market of mobile communications, like Samsung, Nokia, LG,
and Apple. Accordingly, the MOBIPHONE is a representative
sample of the mobile phone industry worldwide.

For 12 male speakers and another twelve female speakers,
randomly chosen from the TIMIT database [27], whose iden-
tities are listed in Table II, 10 utterances were recorded by the
various mobile phones. The recordings were made in a silent
controlled environment with the same recording equipment.
Each speaker reads 10 sentences approximately of 3s long. The
first two sentences are the same for every speaker, but the rest
8 are different. The raw recordings were in adapted multi-rate
(AMR) format and were later converted into Waveform Audio
File (WAV) format. The sampling frequency was 16 kHz. In
the first release of the MOBIPHONE1, the 10 utterances per
speaker were concatenated in a single 30s long recording,
yielding 504 recordings all together. In the second release

1https://www.dropbox.com/sh/9n7fy7moi825bgk/WFLBKxUitV



TABLE I
BRANDS AND MODELS OF THE MOBILE PHONES IN THE MOBIPHONE AND THEIR CLASS NAMES.

Class Name Brand and Model Class Name Brand and Model
HTC1 HTC desire c APPLE1 iPhone5
HTC2 HTC sensation xe S1 Samsung E2121B
LG1 LG GS290 S2 Samsung E2600
LG2 LG L3 S3 Samsung GT-I8190 mini
LG3 LG Optimus L5 S4 Samsung GT-N7100 (Galaxy Note2)
LG4 LG Optimus L9 S5 Samsung Galaxy GT-I9100 s2
N1 Nokia 5530 S6 Samsung Galaxy Nexus S
N2 Nokia C5 S7 Samsung e1230
N3 Nokia N70 S8 Samsung s5830i
SE1 Sony Ericsson c902 V1 Vodafone joy 845
SE2 Sony Ericsson c510i
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Fig. 2. Histogram of the 5th MFCC for different mobile phones and the same
recorded speech signal.

of the MOBIPHONE, the recordings will be provided per
utterance.

V. EXPERIMENTAL EVALUATION

Experiments were conducted on the MOBIPHONE by em-
ploying three commonly used classifiers, such as SVMs with
different kernels [30], [31], an RBF-NN [32], and an MLP
[32]. Two disjoint subsets of 252 recordings were created that
are balanced in the number of recordings as well as speakers
and gender. The first subset was used during the training phase
to train the classifiers, while the second one was used to assess

TABLE II
TIMIT SPEAKER IDENTITIES.

Speaker TIMIT ID Speaker TIMIT ID
1 TEST\DR1\FAKS0 13 TRAIN\DR4\MJAC0
2 TEST\DR2\MPDF0 14 TRAIN\DR1\FVMH0
3 TRAIN\DR1\MMGG0 15 TRAIN\DR1\FETB0
4 TRAIN\DR1\MMRP0 16 TRAIN\DR1\FKFB0
5 TRAIN\DR2\MDMT0 17 TRAIN\DR2\FAEM0
6 TRAIN\DR2\MKAJ0 18 TRAIN\DR2\FCYL0
7 TRAIN\DR2\MRJM1 19 TRAIN\DR3\FALK0
8 TRAIN\DR3\MLNS0 20 TRAIN\DR3\FCKE0
9 TRAIN\DR3\MREH1 21 TRAIN\DR3\FDFB0
10 TRAIN\DR1\MRWS0 22 TRAIN\DR3\FSJS0
11 TRAIN\DR4\MSMS0 23 TRAIN\DR4\FCAG0
12 TRAIN\DR4\MAEB0 24 TEST\DR8\FJSJ0

classifier performance in 252 claims.

To begin with, a multiclass SVM was trained and tested
for closed set identification. Linear, RBF with σ = 5, and
third order polynomial kernels were used in SVMs for various
GMM mixture components. Two types of GSVs were tested,
namely GSVs formed by concatenating the mean vectors of
the GMM components and GSVs including both the mean
vectors and the main diagonal of the covariance matrices. In
the former case, Table III summarizes the accuracies measured,
while Table IV lists the accuracies achieved in the latter case.
The choices for the kernels, the GMM components, and the
type of GSVs influence both the identification accuracy and the
time needed to perform identification. In particular, the fewer
GMM components, the higher accuracy is measured. The RBF
kernel yields the top accuracy for both GSV types. Including
information from the covariance matrices in the GSV improves
slightly the accuracy. The top accuracy achieved with SVMs
was 92.5%.

For RBF-NN, a network of 21 hidden neurons was em-
ployed to perform closed set identification. The identification
accuracies for different values of σ and GSV types are
presented in Tables V and VI. All the three factors affect
the identification accuracy. It is seen, that just one Gaussian
component with a GSV formed by concatenating the mean
vector and the variances and a small value for the spread of



TABLE III
IDENTIFICATION ACCURACIES (IN %) ACHIEVED BY THE SVM FOR GSVS

FORMED BY MEAN VECTORS ONLY.

GMM
Compo-
nents

Kernel func-
tion type

Accuracy

1 Linear 84.1
3 Linear 79.8
6 Linear 75.3
1 RBF 92.1
3 RBF 61.9
6 RBF 21.4
1 Polynomial 92.1
3 Polynomial 74.6
6 Polynomial 55.2

TABLE IV
IDENTIFICATION ACCURACIES (IN %) ACHIEVED BY THE SVM FOR GSVS

INCLUDING ALSO THE MAIN DIAGONALS OF THE COVARIANCE MATRICES.

GMM
Compo-
nents

Kernel func-
tion type

Accuracy

1 Linear 90.4
3 Linear 77.3
6 Linear 78.9
1 RBF 92.5
3 RBF 79.3
6 RBF 7.1
1 Polynomial 89.2
3 Polynomial 59.1
6 Polynomial 34.3

RBFs yields the top accuracy. RBF-NN was found to be the
best classifier, achieving an accuracy of 97.6%.

TABLE V
IDENTIFICATION ACCURACIES (IN %) ACHIEVED BY THE RBF-NN FOR

GSVS FORMED BY MEAN VECTORS ONLY.

GMM
Compo-
nents

σ Accuracy

1 0.1 97.2
3 3 81.7
6 4 85.5

Finally, an MLP was tested for closed set identification.
The best neural network parameter settings are disclosed in
Table VII. MLP performance is influenced by the proper
choice of the 5 factors included in Table VII. That is, the
type of GSV, the momentum and learning rate in the back-
propagation algorithm, the number of hidden neurons, and
number of the epochs. Accordingly, the tuning of MLP is
more cumbersome than that of the other classifiers, requiring
multiple tests. MLP is found to be the second best classifier

TABLE VI
IDENTIFICATION ACCURACIES (IN %) ACHIEVED BY THE RBF-NN FOR

GSVS INCLUDING ALSO THE VARIANCES.

GMM
Compo-
nents

σ Accuracy

1 0.1 97.6
3 5 73.8
6 5 74.2

achieving a top accuracy of 96.4%.
In order to check if the top accuracy differences are

statistically significant, the approximate analysis in [33] is
applied. Assume that the accuracies �1 and �2 are binomially
distributed random variables. If �̂1, �̂2 denote the empirical
accuracies, and � = �̂1+�̂2

2 , the hypothesis H0 : �1 =
�2 = � is tested at 95% level of significance. The accuracy
difference has variance β = 2�(1−�)

M , where M is the
number of test recordings (i.e., 252). For ϕ = 1.65

√
β, if

�̂1 − �̂2 ≥ ϕ, we reject H0 with risk 5% of being wrong.
The aforementioned analysis yields that the performance gain
between the RBF-NN and the SVM (ϕ = 3.19%) as well as
between the MLP and the SVM (ϕ = 3.36%) are statistically
significant. On the contrary, the performance gain between
the RBF-NN and the MLP (ϕ = 2.5%) is not statistically
significant.

VI. CONCLUSIONS

A publicly available database, the MOBIPHONE database,
that contains 21 mobile phones of various models from 7 dif-
ferent brands has been released. Very promising mobile phone
identification accuracy has been obtained by three commonly
used classifiers, namely the RBF-NN, the MLP, and the SVMs
with different kernels. The top accuracy of 97.6% has been
achieved by the RBF-NN. The performance gain between the
RBF-NN and the SVM as well as between the MLP and the
SVM has been attested to be statistically significant. Future
research will address the impact in identification accuracy of
factors, such as unknown background noise, gain settings in
the mobile phone handset, or the speech coding algorithm,
deviating from the ideal situation studied here and converging
to a real forensic scenario.
Acknowledgments. This work has been supported by the Cost
Action IC 1106 “Integrating Biometrics and Forensics for the
Digital Age”.
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