
PERSONALIZED MUSIC TAGGING USING RANKING ON HYPERGRAPHS

Konstantinos Pliakos, Constantine Kotropoulos

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki, 54124, Greece

Email: {kpliakos, costas}@aiia.csd.auth.gr

ABSTRACT

Social tagging enables users of social media sharing platforms to

annotate multimedia items by employing arbitrary keywords (i.e.,

tags), which describe better the multimedia content. Several appli-

cations, such as personalized multimedia recommendation or music

genre classification, to name a few, benefit from tagging. Clearly,

tagging aims at bridging the semantic gap between human concepts

and content retrieval exploiting low-level features extracted from the

multimedia. Here, the problem of personalized tag recommenda-

tion is addressed in a “query and ranking” manner on hypergraphs.

This way, the relationships between the different object types, such

as user friendships, user groups, music tracks and tags are captured

and tags are recommended for a certain track to a user. Ranking on

hypergraphs is studied by enforcing either ℓ2 norm regularization or

group sparsity. Experiments on a dataset collected from Last.fm

demonstrate a promising tag recommendation accuracy.

Index Terms— Music Signal Processing, Tagging, Hypergraph,

Group Sparse Optimization

1. INTRODUCTION

Social tagging systems of Web 2.0 applications, like Youtube1 or

Last.fm2 have become increasingly popular in the last years, lead-

ing to a large amount of generated tags. Users are given the op-

portunity to annotate different types of items (i.e. web sites, media

content, artists, products) with their own tags, which according to

their personal opinion describe better the items. Evidence was re-

ported recently, that the context revealed by user-ratings for music

similarity, the network graph relationships in tagging, and features

not derived from media content for recommendations, are more cru-

cial than content descriptive features [1]. Such findings by no means

de-emphasize the role of content analysis, but undoubtedly highlight

that content analysis is difficult and perhaps underline the need for

better feature analysers. Personalized tag recommendation aims at

supporting large-scale retrieval and recommendation systems by ex-

panding the set of tags annotating the system resources and improv-

ing the user satisfaction.

Various content-based automatic music tagging systems have

been proposed [2–5]. Most of the aforementioned systems resort

to the so-called bag-of-features approach, which models the audio

signals by the long-term statistical distribution of their short-time

spectral features. These features are then fed into machine learn-

ing algorithms that associate tags with audio features. For instance,

audio tag prediction was treated as a set of binary classification prob-

lems, where standard classifiers, such as the Support Vector Ma-

1http://www.youtube.com
2http://www.last.fm

chines [3] or Ada-Boost [2] were applied. Other methods attempted

to infer the correlations or joint probabilities between the tags and

the low-level acoustic features extracted from audio [5] or treated

tagging as a multi-class classification problem [4]. Closely related

to graph-based approaches are the tensor factorization models that

were also employed for personalized tag recommendation [6, 7]. A

graph-based ranking algorithm for different object types was pro-

posed in [8], taking into consideration both the document relevance

and the preferences of each user. The tag recommendation was ad-

dressed in a “query and ranking” manner, where objects and users

were treated as part of the query.

Motivated by [8], here a generalization of graphs, called hyper-

graphs, is employed to model the high-level relationships between

the different object types, i.e., user friendships, groups of users, mu-

sic tracks and tags. A hypergraph is defined as a set of vertices and

hyperedges linking more than two vertices. In this way, several re-

lations between the objects are captured, avoiding any information

loss. Moreover, a regularization framework is proposed, where tag-

ging is treated as a ranking problem on hypergraphs subject to proper

constraints, such as the ℓ2 norm between the query vector and the

vector of the ranking scores (used previously for music recommen-

dation [9]) or group sparsity [10] in order to control how the indi-

vidual object groups (i.e., user friendships, user groups, tracks, tags)

affect the personalized music tagging. By enforcing group sparsity

in the solution, one can take advantage of the hypergraph structure

and examine how each object group and its associated relations af-

fect the personalized tagging.

2. GROUP SPARSE REGULARIZATION FOR RANKING

ON A HYPERGRAPH

A hypergraph G(V,E,w) is defined as a set of vertices V and hy-

peredges E, to which a weight function w : E → R is assigned [11].

Each hyperedge e ∈ E contains an arbitrary number of vertices

v ∈ V and the hyperedge degree δ(e) = |e| is its cardinality. Or-

dinary graphs could be described as hypergraphs with a hyperedge

degree equal to 2. Similarly, the degree of a vertex v can be defined

as δ(v) =
∑

e∈E|v∈e w(e). Let H ∈ R
|V |×|E| be the vertex to hy-

peredge incidence matrix, having elements H(v, e) = 1 if v ∈ e and

0 otherwise. The following diagonal matrices are defined: the vertex

degree matrix Du, the hyperedge degree matrix De of size |V |×|V |
and |E| × |E|, respectively as well as the |E| × |E| matrix W con-

taining the hyperedge weights. The ℓ2 norm of a vector is denoted

by ‖.‖2 and I is the identity matrix of compatible dimensions.

Let A = D
−1/2
u HWD−1

e HTD
−1/2
u , then L = I −A is the

positive semi-definite Laplacian matrix of the hypergraph. For a real

valued ranking vector f ∈ R
|V |, one seeks to minimize Ω(f) =

1
2
fTLf , requiring all vertices with the same value in ranking vector
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f to be strongly connected [12]. The just mentioned optimization

problem was extended by including the ℓ2 regularization norm be-

tween the ranking vector f and the query vector y ∈ R
|V | for music

recommendation in [9]. Clearly, personalized music tagging can be

casted as the solution of the optimization problem:

Q̃(f) = Ω(f) + ϑ ||f − y||22. (1)

Then, personalized music tagging seeks for the ranking vector

f
∗ = argmin

f

Q̃(f) (2)

where ϑ is a regularizing parameter. The solution of (2) is [9]:

f
∗ =

ϑ

1 + ϑ

(

I− 1

1 + ϑ
A
)−1

y. (3)

The vertex set V in the hypergraph is made by the concatenation

of sets of objects of different type, such as user friendships, user

groups, tracks and tags. Let each set of objects define a group.

Clearly, each object group contributes differently to the ranking

procedure. Accordingly, a Group Lasso regularizing term is more

appropriate than the ℓ2 norm [13]. If the hypergraph vertices are

split into S non-overlapping object groups (users, user groups, tags,

tracks) the ranking recommendation should be optimized by as-

signing different weights γs, s = 1, 2, . . . , S to each object group,

yielding the following objective function to be minimized:

Q(f) = Ω(f) + ϑ

S
∑

s=1

√

γs (f − y)TKs(f − y). (4)

In (4), ϑ is also a regularizing parameter and Ks is the |V | × |V |
diagonal matrix with elements admitting the value 1 for the vertices,

which belong to the s-th object group. The personalized tag recom-

mendation problem is now expressed as:

f
∗ = argmin

f

Q(f). (5)

Let x = f − y. By introducing the auxiliary variable z = x, (5) can

be rewritten as:

argmin
x

1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γs zTKsz

s.t. z = x. (6)

The solution of (6) can be obtained by minimizing the augmented

Lagrangian function

L(x, z,λ) = 1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γszTKsz

+λ
T (z− x) +

µ

2
‖z− x‖22, (7)

where λ is the vector of the Lagrange multipliers, which is updated

at each iteration and µ is a parameter regularizing the violation of

the constraint x = z. (7) can be solved by the Alternating Directions

Method [14] as shown in Algorithm 1. Solving for xt+1 in line 3 of

Algorithm 1 yields

x
t+1 = (L+ µ

t
I)−1(λt + µ

t
z
t − Ly). (8)

The minimization problem described in line 4 of Algorithm 1 can be

expressed as

min
z

µ
t

{

ϑ

µt

S
∑

s=1

√
γs
√

zTKsz+
1

2
‖z− (xt+1 − 1

µt
λ

t)‖22
}

. (9)

Algorithm 1 Alternating Directions Method

1: Given xt,zt and λ
t.

2: Set tolerance ǫ and initialize µ.

3: xt+1 ← argmin
x

L(x, zt,λt)

4: zt+1 ← argmin
z

L(xt+1, z,λt)

5: if ‖z− x‖22 > ǫ then

6: λ
t+1 ← λ

t + µt(zt+1 − xt+1)
7: µt+1 = min(1.1µt, 106)
8: else

9: return xt+1, zt+1.

10: f = xt+1 + y

11: end if

By applying the soft-thresholding operator [15], we get

zj =
rj

||rs||2
max

(

0, ||rs||2 − ϑµ
t 1√

γs

)

(10)

where rj = xt+1
j − 1

µt λ
t
j , s is the object group where j-th vertex

belongs, and rs is the segment of r corresponding to the s-th object

group.

3. PERSONALIZED TAG RECOMMENDATION

3.1. Dataset description

The dataset had to be abundant in tagging and listening relations

for evaluation purposes. It was created by collecting real data from

Last.fm. First of all, in order to create the list of users, the 450 top

artists were selected and their top 50 user fans were concatenated in

a user set. This set was then reduced taking into account the track

and tag count of each user, yielding a final set of 1389 users. To

create the track set, the 500 top played tracks for each user were

concatenated in a list, from which 1765 unique tracks were selected

based on their popularity among the users. Finally, the tagging re-

lations of each user were collected and 1711 unique tags were re-

tained. At this point, we have to mention that this choice was guided

by the fact that tagging relations had to be essentially triples (user,

tag, track), so only the tags that were connected to the previously ob-

tained tracks were kept. By using Porter’s stemming algorithm [16]

and calculating the edit distance [17] between the tag pairs, various

morphological variants of the tags were eliminated. The size of all

dataset objects is summarized in Table 1.

Table 1. Dataset objects, notations, and size.

Objects Notations Size

Users U 1389
User Groups Gr 10
Tags Ta 1711
Tracks Tr 1765

3.2. Audio-track similarities

The 20 mel frequency cepstral coefficients (MFCCs) were used to

encode the timbral properties of the music signal. Frames of du-

ration 23ms with a hop size of 11.5 ms and a 42-band filter bank

were used for their calculation. A Gaussian Mixture Model (GMM)
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was created for each track with 30 components trained using the

Expectation-Maximization (EM) algorithm as in [18]. The distances

between the GMM’s were computed by using the Earth Movers’ Dis-

tance [19], yielding the audio-track (content) similarities.

3.3. Hypergraph construction

The vertex set of the hypergraph can be defined as V = U ∪ G ∪
Ta ∪ Tr. The incidence matrix of the unified hypergraph H has a

size of 4875×147296 elements and its structure is shown in Table 2.

In particular:

• E(1): This hyperedge represents a pairwise friendship rela-

tion between users and its weight value is set to 1. The inci-

dence matrix of the hypergraph UE(1) has a size of 1389 ×
12296 elements.

• E(2): This hyperedge represents a group of users and it con-

tains all the vertices of the users participating into the group,

as well as the vertex corresponding to this group. Its weight

value is also set to 1. The incidence matrix of the hypergraph

UE(2) −GrE(2) has a size of 1399× 10 elements.

• E(3): This hyperedge contains a user and a music track,

representing a user-track listening relation. The hyperedge

weight w(e
(3)
ij ) is defined as the number of times the particu-

lar user ui has listened to the track trj , normalized as follows

to eliminate the bias:

w(e
(3)
ij )′ =

w(e
(3)
ij )

√

∑|Tr|
k=1 w(e

(3)
ik )

√

∑|U|
l=1 w(e

(3)
lj )

(11)

and further scaled as w(e
(3)
ij )∗ =

w(e
(3)
ij

)′

ave(w(e
(3)
ij

)′)
, where

ave(w(e
(3)′

ij )) is the average of the normalized weights for

the particular user ui. The incidence matrix of the hypergraph

UE(3) − TrE
(3) has a size of 3154× 68774 elements.

• E(4): This hyperedge contains three vertices: a user, a tag

and a music track, representing a tagging relation. Its weight

is set to 1. The incidence matrix of the hypergraph UE(4) −
TaE

(4) − TrE
(4) has a size of 4865× 48566 elements.

• E(5): The hyperedge contains two vertices which represent

two music tracks. Its weight w(e
(5)
ij ) is the similarity be-

tween tracks tri and trj , normalized as follows to eliminate

the bias: w(e
(5)
ij )′ =

w(e
(5)
ij

)

max(w(e(5)))
. Furthermore, a tuning

parameter c is included in this point, in order to adjust the im-

portance between audio content similarity and social media

information. The final weight is w(e
(5)
ij ) = cw(e

(5)
ij )′. The

incidence matrix of the hypergraph TrE(5) was computed by

selecting only the K most similar tracks (nearest neighbors)

with respect to the content similarity as it is described in Sec-

tion 3.2. Considering our dataset size and structure we set K
to 10 and the size of TrE(5) is 1765× 17650.

Having constructed H, W,Du,De and A can be computed as

described in Section 2. At this point, it has to be mentioned that

each element A(u, v) of A is a relatedness measure between objects

u and v. The ranking vector f∗ is derived by solving either (2) or (5).

The query vector y is initialized by setting the entry corresponding to

the target user u to 1 and all others objects connected to the specific

user (Gr, Ta, Tr), to A(u, v). The query vector y has a length of

4875 elements.

Table 2. The structure of the hypergraph incidence matrix H and its

sub-matrices.

E(1) E(2) E(3) E(4) E(5)

U UE(1) UE(2) UE(3) UE(4) 0

Gr 0 GrE(2) 0 0 0

Ta 0 0 0 TaE
(4) 0

Tr 0 0 TrE
(3) TrE

(4) TrE
(5)

The resulting ranking vector f∗ has the same size and structure

with the query vector y. The values corresponding to tags are used

for personalized tag recommendation with the top ranked tags for a

certain track that is left out being recommended to the user.

3.4. Experiments

Let us refer by Music Recommendation on Hypergraph (MRH) to

the ranking obtained by (3). The ranking obtained by solving (5)

is denoted as Query Group Sparse Optimization (QGSO). The av-

eraged Recall-Precision and the F1 measure are used as figures of

merit. Precision is defined as the number of correctly recommended

tags divided by the number of all recommended tags. Recall is de-

fined as the number of correctly recommended tags divided by the

number of all tags the user actually used for a track. The F1 measure

is the weighted harmonic mean of precision and recall, measuring

the effectiveness of recommendation, when treating precision and

recall as equally important.

To assess the tagging performance, the “leave-one-out” (LOO)

scheme has been used. Each music track listened and tagged by each

user has been left out from training in turn and the 10 top ranked

tags are being recommended for the track left out and this particular

user. In Fig. 1, the Averaged Recall-Precision curves are plotted by

averaging the Recall-Precision curves over 500 randomly selected

users with high tagging activity for both the MRH and the QGSO.

The MRH algorithm models the high-order relations between

U , Gr, Ta, Tr and thus achieves satisfactory results. The problems

associated with data sparsity, like the cold start problem or the user

bias, are alleviated thanks to the additional information on acous-

tic similarity, user friendship relations and tagging relations. The

QGSO inherits the advantages of the MRH, but it exploits also the

group structure of the hypergraph by assigning unique weights γs to

each object group (U , Gr, Ta, Tr).

As it is reflected in Fig. 1, by solving the ranking problem and

enforcing group sparsity, better results are obtained than the MRH.

This way, we exploit the group structure of the hypergraph enhanc-

ing the accuracy of our recommendation method. The weights for

the 4 different object groups (U , Gr, Ta, Tr) were set 0.9, 0.2, 0.9,

0.6 respectively. This choice was made empirically after examining

carefully the results of several experiments.

QGSO yields a slightly higher average precision for average re-

call rate than the MRH. This finding is also supported by studying

the F1-measure for various ranking positions summarized in Table

3.

4. CONCLUSIONS AND FUTURE WORK

Personalized tag recommendation was addressed as a ranking prob-

lem on a hypergraph and solved the ranking problem by enforcing

either ℓ2 norm regularization or group sparsity. The experimental
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Fig. 1. Averaged Recall-Precision curves for the QGSO and the

MRH.

Table 3. Averaged F1 measures for the QGSO and the MRH at

ranking positions 1, 2, 4, ,6, 8 and 10.

F1@1 F1@2 F1@4 F1@6 F1@8 F1@10
QGSO 0.316 0.422 0.486 0.477 0.453 0.433
MRH 0.310 0.410 0.483 0.473 0.450 0.430

results indicated that by using the unified hypergraph, a promising

tag recommendation accuracy has been achieved that can be further

improved thanks to the group structure of the hypergraph.

By using non-overlapping object groups, we assume that each

object group affects the recommendation process separately. How-

ever, certain groups contain mutual and highly correlated informa-

tion, therefore overlapping groups could be exploited to further im-

prove the recommendation results in the future. Finally, this ap-

proach can be possibly extended by automatically calculating the

group-weights, based on an optimization scheme.
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