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ABSTRACT

In this paper, two state-of-the-art subspace clustering techniques,
namely the Sparse Subspace Clustering and the Elastic Net Subspace
Clustering, are tested for clustering. Both algorithms are frequently
implemented using the linearized alternating directions method. An
efficient implementation of the Elastic Net Subspace Clustering is
derived, employing the fast iterative shrinkage algorithm. Random
projections are also used to reduce significantly the computation
time. Figures of merit are reported for two publicly available face
image datasets, i.e., the Extended Yale B dataset and the Hollywood
dataset.

Index Terms— Subspace clustering, face clustering, clustering
assessment

1. INTRODUCTION

Given face images of multiple subjects, face clustering aims at
grouping the images of the same subject together. The subjects
depicted in these images could have a fixed or varying pose. In
addition, the illumination could vary during image acquisition. Face
clustering is a challenging research topic in computer vision. It is
applied to extract semantic information from videos, assisting video
indexing and content analysis (e.g., facial expression recognition or
human action recognition) as well as to preprocess images for face
recognition and surveillance.

An agglomerative or bottom-up hierarchical clustering was ap-
plied to the similarity matrix based on the matching between scale-
invariant features key-points [1]. The clustering quality was assessed
with respect to the F1 measure (that is, the harmonic mean of recall
and precision rates), the overall entropy, and the Γ statistic [2], a
well known cluster validity index. A recursive normalized cut algo-
rithm with properly adjusted thresholds was applied to a similarity
graph based on the mutual information between image pairs [3–5].
Next, tentative mergers between any two clusters created by the
just-mentioned spectral graph clustering technique were examined.
A new dissimilarity measure between two face images using their
neighboring information in the dataset was proposed in [6]. The so-
called rank-order distance is motivated by the observation that two
faces of the same person tend to have many shared top neighbors.
For each face, an ordered list is generated by sorting all other faces
in the dataset. Then, the rank-order distance between two faces is
calculated, using their ranking orders.
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It is well known that various tasks in computer vision, such
as motion segmentation, face clustering under varying illumination,
handwritten character recognition, image segmentation and com-
pression, and feature selection, may be solved as low-dimensional
linear subspace clustering problems [7]. Subspace clustering or hy-
brid linear modeling [8] major premise is that the total variance of
the data in the aforementioned tasks is contained in a small number
of principal axes. Even if the measured data are high-dimensional,
their intrinsic dimensionality is usually much lower. Accordingly,
the data from different classes are assumed to lie in a union of linear
or affine subspaces rather than in a single subspace. Several solu-
tions to the subspace clustering problem have been proposed, such
as the spectral curvature clustering [9], the sparse subspace cluster-
ing (SSC) [10, 11], and the low-rank representation clustering [12].
The former method describes every point by a set of sparse linear
combinations of points from the same subspace. The sparsity in-
formation is then used as a point clustering affinity, while the latter
tries to recover a low-rank representation of the data points, able to
handle the effects of unobserved (i.e., “hidden”) data, by solving a
convex minimization problem. Another method is the so called dis-
criminative subspace clustering, which solves the problem by using a
quadratic classifier trained by unlabeled data (i.e, clustering by clas-
sification) [13]. Labels are generated by exploiting the locality of
points from the same subspace and a basic affinity criterion. Several
classifiers are then diversely trained from different partitions of the
data and their results are combined together in an ensemble in order
to obtain the final clustering result.

However, the classifiers that are based on either sparse repre-
sentations (SR) or low-rank representations (LRR) are not the best
choices for face clustering, when groups of a few contiguous dictio-
nary atoms (i.e., column image vectors) are expected to be highly
collinear. As a result, the sparsity constraint is not appropriate for
selecting the relevant dictionary atoms efficiently, since the least ab-
solute shrinkage and selection operator (LASSO) does not discrimi-
nate between collinear entries adequately. Neither the LRR is consis-
tent with the underlying group collinear structure, because the LRR
tends to produce a holistic dense representation. It has been shown
that the elastic net (EN) criterion is able to handle collinear dictio-
nary atoms [14]. Accordingly, a novel subspace clustering method
that employs the joint elastic net representation of the features is
exploited here for face clustering. Such a representation shares the
same advantages with the SR and the LRR. That is, when the data
are noise-free, the elastic net representation exhibits nonzero within-
subspace affinities and zero between-subspace affinities. Here, the
Elastic Net Subspace Clustering (ENSC) algorithm proposed in [14]
is tested for face clustering. The ENSC algorithm extends the elas-
tic net (i.e., the sum of ℓ1 and squared ℓ2 regularized regression
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in compressive sensing to the more general setting of matrix sub-
space recovery, employing the sum of the ℓ1 norm and the squared
Frobenius norm of a matrix. The joint EN representation is obtained
as the solution of an appropriate convex problem by employing the
convergent Linearized Alternating Directions Method (LADM) [15].
Having found the joint EN representation, an affinity matrix is con-
structed. Face clustering is revealed by applying the normalized cuts
to the EN-based affinity matrix. Both the SSC and the ENSC are fre-
quently implemented using the LADM. Here, a less time-consuming
iterative algorithm for the ENSC than the LADM-based implemen-
tation is theoretically derived by employing the fast iterative shrink-
age algorithm (FISTA) [16]. In addition, random projections [17]
are used to reduce significantly the computation time.

Figures of merit are reported for face clustering by applying the
SSC and the ENSC to two publicly available datasets, namely the
Extended Yale B dataset [18] and the Hollywood Human Actions
dataset [19]. The former database contains faces taken from the
same viewpoint under varying illumination conditions, while the lat-
ter contains face images retrieved by using a face detector and face
tracker that are totally uncalibrated. The experiments have been con-
ducted for a fixed number of clusters, that defined in the associated
ground truth for each dataset. For the Extended Yale B dataset, the
experiments have been conducted by adhering to the experimental
protocol set in [11]. The SSC implementation is that of the au-
thors’1. It is demonstrated that ENSC performs comparably to the
SSC. A slight superiority with respect to the clustering error is no-
ticed for the subsets containing images of 8 and 10 individuals in the
Extended Yale B dataset. By reducing the size of image vectors to
one third using random projections significant time savings are ob-
tained. Unlike the previous works addressed face image clustering
in the Hollywood Human Actions dataset employing a number of
clusters different than that of the ground truth [3–5], here the figures
of merit reported for the SSC and the ENSC were obtained by fixing
the number of clusters to that of the ground truth. Although differ-
ent regularization parameters were employed in the LADM to solve
the SSC for the subsets of face images extracted from the different
movies, the ENSC is demonstrated to achieve comparable perfor-
mance with the same regularization parameters in the LADM across
the dataset.

The outline of the paper is as follows. Section 2 is devoted
to Subspace Clustering. To make the paper self-contained, SSC is
briefly reviewed and emphasis is given to the ENSC. Experimental
results are reported in Section 3. Conclusions are drawn and future
research directions are highlighted in Section 4.

2. SUBSPACE CLUSTERING

Let Y ∈ RM×N be a matrix containing the data points (i.e., image
representations as columns), where M is the image vector size and
N is the number of images. Y is called dictionary hereafter. Let
{Gk}Kk=1 be an arrangement of K linear subspaces of dimensions
{dk}Kk=1. Denote the dictionary as

Y
△
= [y1|y2| . . . |yN ] = [Y1|Y2| . . . |YK ]Γ (1)

where Yk ∈ RM×Nk in a rank-dk matrix of the Nk > dk points
that lie in Gk, Γ ∈ RN×N is an unknown permutation matrix, and
N =

∑K
k=1 Nk. We assume that the bases of the subspaces is not

known a priori nor is it known which data points belong to any sub-
space. In principle, the subspace clustering problem aims at finding

1 www.cis.jhu.edu/˜ehsan/Codes/SSC_ADMM_v1.1.zip

the number of the subspaces, their dimensions, a basis for each sub-
space, and the segmentation of the data in Y [7, 11].

2.1. Sparse Subspace Clustering

Seeking a sparse representation of each data point in the dictionary
in terms of the other points leads to selecting a few points from the
same subspace where the data point lies to. Accordingly, SSC at-
tempts to find a non-trivial representation of yi by minimizing the
tightest convex relaxation of the ℓ0 norm [10, 11]:

min ||ci||1 s.t. yi = Y ci and cii = 0. (2)

For the entire dictionary, the sparse optimization problem (2) can be
rewritten as

min ||C||1 s.t. Y = Y C and diag(C) = 0 (3)

where C = [c1|c2| . . . |cN ] ∈ RN×N is the matrix whose i-th col-
umn corresponds to the sparse representation of yi and diag(C) ∈
RN×1 is the vector of the diagonal elements of C. The constraint in
(3) ensures that the result is not trivial. An efficient solution for the
sparse optimization problem (3) using LADM was derived in [11].
Having found C, one obtains a symmetric similarity (i.e., affinity)
matrix as W = |C|+ |C|T . The ideal similarity matrix has a block
diagonal structure

W =

 W1 . . . 0
...

. . .
...

0 . . . WK

Γ (4)

where Wk, k = 1, 2, . . . ,K is the similarity matrix of the data
points in Gk. Accordingly, the associated graph has ideally K con-
nected components corresponding to the subspaces. Clustering of
the data into subspaces can be done by applying spectral clustering
to W [20, 21]. Let 1 ∈ RN denote a vector of ones and D be the
degree matrix, i.e., diag(D) = W1. In [20], the K-means algo-
rithm [22] is applied to the row vectors of the matrix formed by the
bottom K eigenvectors of D−1L, where L = D−W is the unnor-
malized graph Laplacian. In [21], the K-means algorithm is applied
to the row vectors of the matrix formed by the bottom K eigenvec-
tors of the normalized graph Laplacian D−1/2LD−1/2. The SSC is
well documented and has achieved impressive performance in many
clustering applications [11].

2.2. Elastic Net Subspace Clustering

In the ideal case, if the data points belong to an arrangement (i.e., a
cluster), they will lie into the same union of subspaces. Accordingly,
it is assumed that yi are drawn from a union of K unions of indepen-
dent linear subspaces of unknown dimensions. Moreover, groups of
a few contiguous yi are expected to be quite similar and thus highly
correlated. Based on the just mentioned assumptions, one would like
to learn the representation matrix C ∈ RN×N , such that Y = YC,
with cij = 0 if yi and yj lie on different unions of subspaces and
nonzero cij otherwise. Such a representation matrix C measures the
similarity between all the features, unveiling the hidden subspace
structure. It is obtained by solving [14]:

argmin
C

λ1∥C∥1 +
λ2

2
∥C∥2F s.t. Y = YC and cii = 0. (5)



In (5), the matrix ℓ1-norm is defined as ∥Z∥1 =
∑

i

∑
j |zij | and

∥Z∥F =
√∑

i

∑
j z

2
ij denotes the Frobenius norm. (5) is a com-

bination of the matrix ℓ1-norm and squared Frobenius norm. Ac-
cordingly, it is actually an extension of the vector elastic net regular-
izer [23] to matrices and admits nonzero entries for within-subspace
affinities and zero entries for between-subspace affinities.

In practice, the assumption Y = YC does not hold exactly,
because the data are approximately drawn from unions of subspaces.
This fact introduces deviations from the ideal modeling assumptions.
The latter can be treated collectively as additive noise contaminating
the ideal model i.e., Y = YC + E. To account for the noise, a
distortion term is inserted into (5) and a robust solution is sought for
the following convex optimization problem:

argmin
C,E

λ1∥C∥1 +
λ2

2
∥C∥2F + λ3∥E∥1

s.t. Y = Y C+E and cii = 0 (6)

where λ3 > 0 is a regularization parameter. To efficiently solve (6),
the LADM [15] is employed, which is suitable for large scale opti-
mization problems. By applying the LADM, one seeks to minimize
the (partial) augmented Lagrangian function:

argmin
C,E

L(C,E,Ξ) = λ1∥C∥1 +
λ2

2
∥C∥2F + λ3∥E∥1

+tr
(
ΞT (Y −YC−E)

)
+

µ

2
∥Y −YC−E∥2F ,

s.t. cii = 0 (7)

where Ξ gathers the Lagrange multipliers for the equality constraints
in (6) and µ > 0 is a penalty parameter. Let t denote the iteration in-
dex and σ be the largest singular value of Y. Then, (7) is minimized
with respect to each variable in an alternating fashion, as outlined in
Algorithm 1.

Following [15], since (8) does not admit a closed-form solution,
the smooth term in (7) is linearly approximated and a closed-form
solution (9) has been derived [14]. The approximate solution (9)
employs the shrinkage operator Sτ [q] = sgn(q)max(|q|−τ, 0) [24],
which can be extended to matrices by applying it element-wise. Sim-
ilarly, a closed-form solution for the optimization problem (11) is
obtained by applying the shrinkage operator (12). The diagonal ele-
ments of C[t+1] are set to zero in (10) in order to fulfil the constraint
in (7). In Algorithm 1, the internal parameter θ is made data depen-
dent, i.e., θ = 1.02σ2; the parameters λ1, λ2, λ3 and ρ are set by
a grid searching in the Extended Yale B and the Hollywood Human
Actions datasets. Regarding the parameters related to the stoping
conditions in Algorithm 1, ϵ1 = 10−4 and ϵ2 = 10−5 are typical
choices [15]. The penalty parameter µ is updated in line 6 of Algo-
rithm 1.

Having found C, its column space is useful for clustering. Let
C = UΣVT be the singular value decomposition of C and M =
UΣ1/2Σ1/2UT = UΣUT . Then, an elastic net nonnegative sym-
metric affinity matrix W ∈ RN×N

+ has elements [12]:

wij = m2
ij . (13)

The segmentation of the columns of Y into K clusters is performed
by applying spectral clustering to W.

A more efficient solution is obtained by alternating between the
solution of the problem with respect to C, keeping E fixed:

argmin
C;E
||Y−YC−E||2F+λ2||C||2F+λ1||C||1 s.t. cii = 0 (14)

Algorithm 1 Solving (7) by the LADM method.

Input: Data matrix Y ∈ RM×N and the parameters λ1, λ2, λ3,
and ρ.
Output: Matrices C ∈ RN×N and E ∈ RM×N .

1: Initialize: C[0] = 0,E[0] = 0, Ξ[0] = 0, µ[0] = 10−6, θ =
1.02σ2, ϵ1 = 10−4, and ϵ2 = 10−5.

2: while not converged do
3: Fix E[t], and update C[t+1] by

C[t+1] = argmin
C[t]

L(C[t],E[t],Ξ[t]) (8)

≈ S λ1
θµ[t]

[
C[t] +

1

θ

(
YT (Y −YC[t] −E[t]

+
1

µ[t]
Ξ[t])−

λ2

µ[t]
C[t]

)]
. (9)

cii[t+1] = 0. (10)

4: Fix C[t+1] and update E[t] by

E[t+1] = argmin
E[t]

L(C[t+1],E[t],Ξ[t]) (11)

= S λ3
µ[t]

[
Y −YC[t+1] +

1

µ[t]
Ξ[t]

]
(12)

5: Update the Lagrange multiplier by
Ξ[t+1] = Ξ[t] + µ[t](Y −YC[t+1] −E[t+1]).

6: Update µ[t+1] by µ[t+1] ← min(ρ · µ[t], 10
10).

7: Check convergence conditions

∥Y −YC[t] −E[t]∥F
∥Y∥F

≤ ϵ1 and

max
(∥E[t] −E[t−1]∥F

∥Y∥F
,
∥C[t] −C[t−1]∥F

∥Y∥F

)
≤ ϵ2.

8: t← t+ 1.
9: end while

and the solution with respect to E, keeping C fixed:

argmin
E;C
||(Y −Y C−E||2F + λ3||E||1. (15)

Let F (C) denote the objective function in (14). F (C) can be
decomposed as F (C) = f(C) + g(C), where f(C) = ||Y −
Y C − E||2F + λ2||C||2F and g(C) = λ1||C||1. It is seen that
f(C) : RN×N → R is a smooth convex function continuously
differentiable with Lipschitz continuous gradient and Lipschitz con-
stant L(f), while g(C) : RN×N → R is a continuous convex
function. Following similar lines to [16], it can be shown that for
L > 0 the optimization problem minF (C) admits the unique
minimizer [16]

pL(Z) = argmin
C

{
g(C) +

L

2
tr

[(
C

−
(
Z− 1

L
∇f(Z)

))T(
C−

(
Z− 1

L
∇f(Z)

))]}
(16)



Algorithm 2 Solving (7) with the FISTA.

Input: Data matrix Y ∈ RM×N and the parameters λ1, λ2, λ3,
and L = L(f).
Output: Matrices C ∈ RN×N and E ∈ RM×N .

1: Initialize: t = 1, ζ[1] = 1, C[0] = 0, E[0] = 0, Z[1] = C[0].
2: while not converged do
3:

C[t] = Sλ1
L

[
Z[t] +

2

L

(
YT (Y −YZ[t] −E[t−1])

−λ2Z[t]

)]
4:

E[t] = Sλ3
2

[
Y −YC[t]

]
(18)

5: ζ[t+1] =
1+

√
1+4ζ2

[t]

2

6: Z[t+1] = C[t] +
ζ[t]−1

ζ[t+1]

(
C[t] −C[t−1]

)
7: t← t+ 1.
8: end while

where∇f(Z) = 2(YTY+λ2I)Z−2YT (Y−E) and I is the iden-
tity matrix of compatible dimensions. The Lipschitz constant of∇f
is L(f) = 2(ηmax(Y

TY) + λ2) = 2(σ2 + λ2) ≤ 2(tr(YTY) +
λ2), because for the maximum eigenvalue of YTY, ηmax(Y

TY),
it holds ηmax(Y

TY) = σ2. Accordingly, the iterative shrinkage-
thresholding algorithm asserts [16]

C[t+1] = pL(C[t]) = argmin
C

{
g(C) +

L

2
||C

−
(
C[t] −

1

L
∇f(C[t])

)
||2F
}

= Sλ1
L

[
C[t]

+
2

L

(
YT (Y −YC[t] −E)− λ2C[t]

)]
. (17)

The optimization with respect to E in (15) yields the updating equa-
tion (18). The multistep version of an accelerated gradient-like
method proposed in [25] can be exploited to come up with the fast
iterative-shrinkage algorithm for solving the elastic net representa-
tion summarized in Algorithm 2.

Algorithm 2 is more efficient than Algorithm 1, because there is
no need to update any Lagrange multipliers.

3. EXPERIMENTAL RESULTS

The ENSC algorithm was applied to face clustering on two publicly
available datasets, namely the Extended Yale B dataset [18] and the
Hollywood Human Actions dataset [19]. The implementation in Al-
gorithm 1 was used. The performance of ENSC was compared to
that of the SSC in both datasets. The SSC achieved the top perfor-
mance in the former dataset [11].

The Extended Yale B dataset consists of 192 × 168 pixel
cropped face images of K = 38 subjects. There are Nk = 64,
k = 1, 2, . . .K frontal face images for each subject acquired un-
der various lighting conditions. All images were downsampled to
48 × 42 pixels and treated as column vectors of size M = 2016.
It has been found that the face images lie close to a union of 9-
dimensional subspaces [11]. To study the effect of the number of

Table 1. Clustering error (%) of different algorithms on the Ex-
tended Yale B dataset.

Algorithm SSC ENSC ENSC-R
2 Subjects
Mean 1.86 3.41 3.61
Median 0 2.34 1.56
3 Subjects
Mean 3.10 4.06 4.31
Median 1.04 3.65 3.65
5 Subjects
Mean 4.31 4.58 4.73
Median 2.50 4.06 3.91
8 Subjects
Mean 5.85 5.57 6.59
Median 4.49 4.30 3.91
10 Subjects
Mean 10.94 6.67 8.91
Median 5.63 4.22 3.91

subjects in the clustering performance of the ENSC and the SSC,
we adhered to the experimental setting used in [11]. That is, the
38 subjects were divided into 4 groups, where the first three groups
corresponded to subjects 1 to 10, 11 to 20, 21 to 30, and the fourth
group included subjects 31 to 38. For each of the first three groups,
all choices of K ∈ {2, 3, 5, 8, 10} subjects were considered. For the
last group, the choices K ∈ {2, 3, 5, 8}were taken into account. For
each trial (i.e., set of K subjects), both clustering algorithms were
tested. Table 1 summarizes the clustering error, defined as the ratio
of the number of misclassified face vectors over the total number of
face vectors N , as in [11]. The data points were made zero-mean by
centering and normalized to unit-norm, prior to the ENSC. To reduce
the computational time of the ENSC, the size M of the data points
was reduced to one third by random projections (ENSC-R) prior
to centering and unit-norm normalization. The parameters for the
ENSC were set as follows: λ1 = λ2 = λ3 = 0.1, and ρ = 1.5. The
elastic net affinity matrix was further post-processed by applying
a two-dimensional Gabor filter with angle π/4 in order to enhance
any diagonal structures in it. It is seen that the deterioration in the
clustering error is insignificant. That is, less than 1% for subjects
fewer than 5, approximately 1% for 8 subjects, and 2.24% for 10
subjects. The performance quoted for SSC is that in [11, Table 5].
The ENSC without employing the random projections is ranked
first for 8 and 10 subjects, second-best for 3 and 5 subjects, and
third-best after the SSC and the Low-Rank Recovery with heuristic
(LLR-H) [11].

The Hollywood Human Actions dataset [19] consists of 32
movie clips. Only 23 of the movies were used, as in [5]. Face
images were retrieved by means of a face detector and a face tracker
in each movie clip. Actors’ faces are depicted at varying poses and
illumination. The faces are not always aligned to the camera. All
images were downsampled to 60 × 60 pixels and treated as column
vectors of size M = 3600. The number of face images in each
movie clip is indicated in Table 2. Clustering was performed by
setting K equal to the ground truth value. The number of different
actors tracked in each movie (i.e., K) varies between 2 and 10 indi-
viduals. The parameter alpha in the SSC code1, which controls the
penalty parameters λ1, λ2, and λ3 in the LADM solving the SSC
optimization problem, was varying among the movies. Its values
are listed in Table 2. The data points were made zero-mean by



centering and normalized to unit-norm before the application of the
ENSC. The parameters for the ENSC were set as follows: λ1 = 0.8,
λ2 = 0.2, λ3 = 0.1, and ρ = 1.1 for all face image subsets (i.e.,
the face images detected and tracked in each movie clip). These
parameters were determined by grid searching in the first 4 face
image subsets. Both spectral graph clustering variants [20, 21] were
applied to the affinity matrix of the EN. The spectral graph clustering
variant yielding he smallest clustering error was chosen. The clus-
tering error and the average F1 measure, F1, were used as figures of
merit. Let Gk denote a class according to the ground truth and Ĝk be
the cluster created by an algorithm, such that k = map(κ), where
the right-hand side refers to the permutation mapping function that
maps each cluster label κ to the equivalent ground truth label k. The
precision and the recall for the class k are given by

P (k) =
|Gk ∩ Ĝk|
|Ĝk|

(19)

R(k) =
|Gk ∩ Ĝk|

Nk
(20)

where | | denotes set cardinality. Then, F1 is defined as

F1 =

K∑
k=1

Nk

N
F1(k) = 2

K∑
k=1

(
Nk

N

)(
P (k) +R(k)

P (k)R(k)

)
. (21)

On average, the ENSC with the same set of parameters achieved
an equally descriptive clustering with the SSC whose parameters
were tuned for each image subset, taking into account F1. In par-
ticular, the ENSC performs better than the SSC in 11 image subsets
among the 23. In another 2 image subsets, the performance of ENSC
matches that of the SSC. It is worth mentioning that the ENSC out-
performs the SSC for the 7 image subsets including more than 90
face images. This is attributed to the ability of the ENSC to handle
better the collinear atoms in face clustering than the SSC.

4. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this paper, the performance of the ENSC was assessed in face
clustering on two publicly available datasets, namely the Extended
Yale B and the Hollywood Human Actions datasets. Its performance
was compared to that of the SSC. Encouraging results have been
demonstrated without paying any specific effort to either tune the
algorithm parameters or estimate the number of clusters in the data
matrix. The latter has the top priority in the future research. For
example, Robust Principal Component Analysis could be exploited
toward this direction. Although a limited set of figures of merit has
been used to assess the clustering performance, in order to enable
comparisons with existing related works, the set of figures of merit
could be much broader, including pairwise recall, pairwise preci-
sion, and pairwise F measure, cluster purity, person purity, the Rand
index, the mutual information, or the conditional entropy for over-
segmentation and under-segmentation. The extended set of figures
of merit makes sense, when the number of clusters is estimated.
The concept of correntropy, and particularly the correntropy induced
metric or the maximum correntropy criterion, as a generalized sim-
ilarity measure between two random vectors, already exploited for
low-rank representations in [26], will be employed to re-formulate
the EN representation.
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