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Abstract—A compact framework is presented for the descrip-
tion and representation of videos depicting human activities, with
the goal of enabling automated large-volume video summarization
for semantically meaningful key-frame extraction. The frame-
work is structured around the concept of per-frame visual word
histograms, using the popular Bag-of-Features approach, and the
spatial pyramid image partitioning scheme. Three existing image
descriptors (histogram, FMoD, SURF) and a novel one (LMoD),
as well as a component of an existing state-of-the-art activity
descriptor (Dense Trajectories), are adapted into the proposed
framework and quantitatively compared against each other, as
well as against the most common video summarization descriptor
(global image histogram), using a publicly available annotated
dataset and the most prevalent video summarization method,
i.e., video frame clustering. In all cases, several image channels
are exploited (luminance, hue, edges, optical flow magnitude) in
order to simultaneously capture information about the depicted
shapes, colors, lighting, textures and motions. The quantitative
evaluation results indicate that one of the proposed descriptors
clearly outperforms the competing approaches in the context of
the presented framework.
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I. INTRODUCTION

Several applications exist nowadays where large-scale
video footage depicting human activities needs to be ana-
lyzed, possibly on a frame-by-frame basis, requiring human
intervention. Examples include professional capture sessions,
where the action described in the script is typically filmed
using multiple cameras, or streams from surveillance cameras
which may be capturing continuously for many days. A very
large volume of data are usually produced in such scenarios,
which may well exceed 6TB per day [1]. This amount of data
is difficult to be efficiently assessed and analysed manually,
demanding a great deal of human effort.

Video summarization can be employed as an automated
solution to such problems, by generating a condensed version
of the video that only contains the most important content
[2]. Subsequently, these summaries may be used instead of
the original video streams in order to alleviate storage or
computational requirements, or the necessary human labour,
e.g., in case manual annotation is needed. Most summarization
methods initially select a subset of important video frames
(key-frames) that compactly represent the entire video content.
The abstracted content that needs to be included in the target
summary can be represented either as an ordered set of static
key-frames, or as a dynamic video skim, with the former being
more suitable for indexing, browsing and retrieval applications
[3]. Evaluation of the success of a summarization method is

typically subjective, due to the inherently subjective nature of
the task.

Video frames are initially described by low-level image
descriptors, such as global color-based, texture-based or shape-
based features [4]. In general, the most commonly employed
video frame descriptors are variants of global joint image
histograms in the HSV color space [5] [6]. In order to
bring down the computational requirements of the subsequent
summarization process, dimensionality reduction on such color
histograms has been attempted [7]. In [8] the low-level Frame
Moments Descriptor (FMoD) is introduced, a video descriptor
designed for compactly capturing statistical characteristics of
several image channels, both in a global and in various local
scales. In a number of works [3] [9], local, recognition-
oriented image descriptors have been employed for video
description (e.g., Scale-Invariant Feature Transform (SIFT)
[10] or Speeded-Up Robust Features (SURF) [11]), using the
popular Bag-of-Features (BoF) representation model [12]. In
general, video description and representation methods specif-
ically suited to video summarization have not been studied
extensively.

Key-frame extraction typically includes clustering the
video frame descriptors into groups. Subsequently, a set of
frames that are closest to each cluster centroid are initially
selected as key-frames. In many cases, information about the
way a video is naturally segmented into shots (e.g., in movies
[8]) is also exploited to assist the summarization process
[13] [6], e.g. by applying clustering at shot-level. Typically, a
number of the extracted key-frames are filtered out to reduce
redundancy and the rest are presented in temporal order.

Although the above approaches are oriented towards
generic video input, methods exploiting video type-specific
information have also been proposed. In surveillance videos,
temporal segmentation (shot boundaries detection [14]) is not a
viable option due to the lack of cuts, therefore motion detection
is employed in order to create summaries that contain sets
of object actions, like pedestrian walking. Detected actions
taking place in different direction and speed, are fused into
a single scene to form a short length video or graphical
cue containing as many actions as possible [15]. However,
in unedited videos from professional capture sessions (e.g.,
in TV/movie production), which are also filmed with a static
camera and not clearly segmented into shots, such an approach
is not applicable. The preferred summarization goal would
naturally be to select one key-frame per depicted activity.
Moreover, while in both cases the most important visual clue is
human motion, state-of-the-art human activity descriptors such
as Dense Trajectories [16] cannot be readily employed, due



to the exceptionally high memory/computational requirements
and their unsuitability for per-frame descriptions, given that
accurate activity descriptions extend temporally in multiple
neighbouring video frames.

This work attempts to investigate video descrip-
tion/representation specifically suited to video summarization
tasks. It presents a compact framework for the description and
representation of videos depicting human activities, with the
goal of enabling automated large-volume video summarization
for semantically meaningful key-frame extraction. The goal
is to succinctly summarize a video by, ideally, selecting one
key-frame per depicted activity segment. The framework
is structured around the concept of per-frame visual word
histograms, using the established BoF approach. This scheme
successfully captures the distribution of elemental visual
building blocks at each video frame and has been proven
suitable for discriminative representation of human activities,
in tasks such as activity recognition [17] or temporal activity
segmentation [18].

Three existing image descriptors (histogram, FMoD,
SUREF), a novel one (LMoD), as well as a component of Dense
Trajectories, are adapted into the proposed framework. The im-
age descriptors are quantitatively compared against each other,
as well as against the most common video summarization
descriptor, i.e., global image histogram, a variant of which
was shown in [3] to outperform all competing approaches
when no shot boundaries information was available. The two
local descriptors (SURF and LMoD) are evaluated with and
without the addition of the implemented Dense Trajectories
variant. A publicly available annotated dataset [19] and the
most common video summarization method, i.e., video frame
clustering, are adopted. In all cases, several image channels
are being exploited (luminance, hue, edges, optical flow mag-
nitude) in order to simultaneously capture information about
the depicted shapes, colors, lighting, textures and motions. A
simple, objective evaluation metric is employed for comparing
the competing descriptors.

II. A FRAMEWORK FOR DESCRIBING AND
REPRESENTING ACTIVITY VIDEOS

In the proposed approach, each video is assumed to be
composed of a temporally ordered sequence V of N; video
frames, each one being a set V; of K matrices V;;, € RM*N
where 0 < ¢ < Ny and k € [,h,0,e. K is the number of
available image channels: [ stands for luminance, h for color
hue, o for optical flow magnitude and e for edge map. Each
V., is a digitized 8-bit image with a resolution of M x N
pixels.

The presented framework operates by initially computing
a set of low-level, L-dimensional description vectors at each
V.. For a given i, a single set of descriptors D; is subse-
quently derived from all image channels, by simply concate-
nating corresponding vectors computed for different values
of k. The correspondence among channels is established in
terms of spatial pixel coordinate matching. Each D;, composed
of P; LK-dimensional, multichannel description vectors, is
then transformed into a single histogram feature vector d;
by following a Bag-of-Features representation approach [12].
That is, all multichannel description vectors from the entire

video are clustered into K ¢ representative groups, called visual
words. The set of all cluster centroids is called a codebook
and c is the codebook size parameter. Each of the P; vectors
in D; is subsequently assigned to the nearest visual word, in
terms of Euclidean distance. The number of description vectors
assigned to each of the Kc clusters is an entry in a Kc-
dimensional vector. This vector is followingly transformed into
a histogram by L;-normalization, in order to produce the final
K c-dimensional video frame feature vector d;. The histogram
construction process is repeated for all Ny values of i.

Any type of low-level descriptor can be employed during
the first step of the algorithm. This is trivial in the case of
local descriptors, such as SIFT or SURF, but not when global
descriptors are to be used. In the context of the proposed
framework, a variant of the spatial pyramid approach [20]
presented in [8] has been adopted for any global descriptor.
That is, each M x N video frame V,, is partitioned in
small blocks of m x n pixels, where m < M and n < N.
A description vector is then computed separately for each
such block. The process is successively repeated d times,
for larger values of m and n, until m = M and n = N
during the last iteration. From an implementation point-of-
view, this is executed recursively, in a top-down manner, with
the image region that is currently being described at each
time, subsequently being partitioned into 4 quadrants. These
quadrants serve as input blocks to the 4 recursive function
calls of the next step. Thus, the total number S of produced
description vectors is given by the sum of the first d terms of
a geometric progression:

S(d)=1-4"41-4" 4. 414 =4~ 1)/3 (1)

In the end, a set of description vectors over various image
regions and for various scales is produced, including one
truly global description vector (computed over the entire V).
Auwailable local information is more spatially focused for higher
values of d, at the cost of higher computational requirements.
In general, however, the main advantage of global image
descriptors, i.e., rapid computation [21], is mostly retained
with this simple spatial partitioning scheme, in comparison
to more complicated alternative approaches, such as image
segmentation.

Below, the descriptors used for the evaluation of the
proposed framework are presented.

A. Global Descriptors

Global histograms computed in various image channels are
the most commonly used feature descriptors for video sum-
marization. For instance, in [6], 16-bin hue histograms derived
from the video frame representation in the HSV color space are
employed. In the presented framework, a histogram resolution
of 16 bins is also adopted in the context of the multichannel,
video frame partitioning scheme previously described.

FMoD [8] was also adopted and adapted to our mul-
tichannel, video frame partitioning scheme. FMoD operates
at each m x n block by computing one profile vector for
the horizontal dimension and one for the vertical dimen-
sion, through averaging pixel values across block columns
/ rows, respectively. The result is an n-dimensional and an
m-dimensional profile vector. Each of the two vectors is



summarized by their first 4 statistical moments (mean, standard
deviation, skewness, kurtosis). The resulting 8-dimensional
vector £; = [myg, mag, mam, Mapr, mav, may, msy, may|”
compactly captures the statistical properties of the block.

In this work, FMoD was extended by adding first-order
statistical texture analysis components to the summary of each
profile vector, i.e., energy and entropy. Moreover, on top of the
horizontal and the vertical profile vector, a third block vector
is constructed by vectorizing the actual block in row-major
order. The same statistical synopsis is also applied on this
vector, resulting in an 18-dimensional block description vector
fi = [mlHa o, MeH, MV, -, eV, B, " 7mGB]T' Us-
ing this notation, H, V' and B refer to the extracted statistical
properties of horizontal profile vectors, vertical profile vectors
and block vectors, respectively.

B. Local Descriptors

The most commonly employed local image descriptor is
SIFT, with the less computationally costly SURF being a close
second choice. Both produce histograms of edge orientations
for carefully selected image interest points, in a scale- and
rotation-invariant manner. This stems from their design with
object recognition tasks in mind, but is not necessarily an
ideal approach for the domain of activity video summarization.
Since the video description process is not meant to enable suc-
cessful video classification, but salient key-frame extraction,
and given that the subsequent BoF representation step provides
(to a degree) several invariances, local descriptors can be of a
holistic nature, i.e., they would only need to compactly capture
major characteristics of untransformed image patches, covering
most of (or even the entire) video frame.

In the presented framework, the SURF detector and de-
scriptor [11] was adopted, for reasons of computational speed.
Interest point detection occurs on the luminance video frame
channel and the detected key-point coordinates are used for
SUREF description vectors computation on all employed chan-
nels.

Additionally, the global, extended FMoD descriptor dis-
cussed in Subsection II-A, provided the basis for a novel local
descriptor, called Local Moments Descriptor (LMoD). LMoD
operates in the manner presented below.

To describe a given image block B with a dimension
of b x b pixels, B is recursively partitioned into quadrant
sub-blocks using the video frame partitioning scheme of the
global descriptor case. For each sub-block, the 18-dimensional
description vector of the extended FMoD descriptor is com-
puted and all such vectors are concatenated into an 18S5(d)-
dimensional block description vector, where S(d) is given by
Equation (1).

Instead of sparsely detecting interest points, as in the
case of SIFT or SURF, the luminance channel of the i-th
video frame (V;;) is densely sampled on a rectangular grid
to extract the block centers where LMoD vectors are to be
computed, using a sampling step of s pixels. Subsequently,
each candidate block is checked for luminance homogeneity,
in order to dismiss blocks conveying minimal information. To
achieve rapid computation, this is simply implemented using a
threshold ¢; on the standard deviation of the block luminance.

Dense sampling of interest points allows the background of
a depicted activity to be taken into account and complements
the holistic nature of LMoD descriptors. As in the case of
SUREF, description vectors are constructed on all employed
channels at the spatial coordinates computed in V;.

C. Activity Descriptor

The multichannel global and local descriptors previously
presented are able to describe each video frame in several
ways. However, motion information is provided only from the
optical flow magnitude image channel and, therefore, is too
temporally localized. Since the focus is on activity videos,
an additional descriptor may be employed along with local
descriptors, which attempts to capture consistent motion in
wide temporal windows. This descriptor, called Trajectories,
has been adopted and adapted from one component of the state-
of-the-art Dense Trajectories description algorithm (designed
for activity recognition) [16].

Below, a set of D; computed description vectors (corre-
sponding to D; detected interest points) is assumed for each
V,;. Trajectories operate by tracking each local interest point
along consecutive video frames, using the estimated optical
flow magnitude image channel, for a temporal window of T,
frames, in a sliding window approach. Thus, for each local
descriptor, a temporally ordered sequence of T, coordinate
pairs (z,y) (referring to horizontal and vertical pixel positions,
respectively) is produced, which is equivalent to a set of
spatiotemporal coordinate triplets of the form (z,y,t). If a
coordinate triplet is shared among different sequences, one
sequence is retained and the rest are discarded. A 27,-
dimensional vector of spatial displacements is then computed
from each sequence, by subtracting the corresponding spatial
coordinates among all pairs of subsequent video frames. Static
vectors of displacements (derived from interest points with
no motion) are eliminated, through comparing their L; norm
with a threshold ¢,. Finally, each retained vector is normalized
by the sum of its displacement magnitudes. The result is a
trajectory description vector t;, 0 < j < P, where P is the
total number of estimated trajectories across the entire video.
Each t; encodes relative motion direction patterns across a
wide temporal window, in a partially scale-invariant manner.
For each trajectory starting at video frame b, b is also recorded
and, thus, it is trivial to determine which frames t; passes
through (i.e., which ones are contained in it). The starting
frame of t; is hereafter denoted by b;.

The set of all trajectory vectors from all video frames is
employed to construct a codebook of size ¢, which is subse-
quently used to compute a trajectory histogram h; per video
frame V;. Unlike in the traditional BoF approach, computing
h; includes a simple weighting scheme: the contribution of
each trajectory t; is weighted based on the relation between
temporal positions b; and . That is, the corresponding weight
wj is derived from a discrete Gaussian over the temporal axis
with its peak at position 7, where each t is assigned to position
b; + [(T\/2)]. Obviously, trajectories not containing position
i are completely disregarded. In the end, a c-dimensional
trajectory histogram h; has been produced for each video
frame V,;, encoding spatiotemporal activity information.

By employing the approach described above, activity mo-
tion descriptions are computed as video features complemen-



tary to local description vectors, in a manner that allows per-
frame activity representation.

I1I. QUANTITATIVE EVALUATION
A. Evaluation Dataset

In order to experimentally evaluate the proposed framework
and descriptors, a subset of the publicly available, annotated
IMPART video dataset [19] was employed. It depicts three
subjects/actors in two different settings: one outdoor and one
indoor. A living room-like setting was set-up for the latter,
while two scripts were executed during shooting, prescribing
human activities by a single human subject: one for the outdoor
and one for the indoor setting. In each shooting session, the
camera was static and the script was executed three times
in succession, one time per subject/actor. This was repeated
three times per script, for a total of 3 indoor and 3 outdoor
shooting sessions. Thus each script was executed three times
per actor. Three main actions were performed, namely “Walk”,
“Hand-wave” and “Run”, while additional distractor actions
were also included and jointly categorized as “Other” (e.g.,
“Jump-up-down”, “Jump-forward”, “Bend-forward”). During
shooting, the actors were moving along predefined trajectories
defined by three waypoints (A, B and C). Summing up, the
dataset consists of 6 MPEG-4 compressed video files with a
resolution of 720 x 540 pixels, where each one depicts three
actors performing a series of actions one after another. The
mean duration of the videos is about 182 seconds, or 4542
frames.

The fact that ground truth annotation data provided along
with the IMPART dataset describe not key-frames pre-selected
by users, as in [6] (which would be highly subjective),
but obvious activity segment video frame boundaries, was
exploited to evaluate the proposed framework as objectively
as possible. Given the results of each summarization algo-
rithm for each video, the number of extracted key-frames
derived from actually different activity segments (hereafter
called independent key-frames) can be used as an indication
of summarization success. Therefore, the ratio of extracted
independent key-frames by the total number of requested key-
frames K, hereafter called Independence Ratio (IR) score, is
a practical evaluation metric.

B. Experimental Results

The proposed framework and video frame descriptors, as
well as a multichannel variant of the global image histogram
(without the BoF representation stage) which is popular in
the relevant literature (e.g., in [5], [6]), were evaluated on
the presented IMPART dataset, using the IR metric and the
K-Means++ algorithm [22] for frame clustering, as the main
summarization method. Other clustering algorithms have been
tested and shown to provide similar results. The method in
[23] was employed for optical flow estimation. The Laplace
operator was used for deriving the edge map image channel,
after 3 X 3 median filtering for noise suppression.

The number of clusters K, i.e., the number of requested
extracted key-frames per video, is a user-provided parame-
ter which controls the grain of summarization. Typically, in
clustering-based summarization approaches, K is set propor-
tionally to video length and in accordance with the desired

TABLE I: A comparison of the mean IR scores for differ-
ent video description and representation methods, using K-
Means++ summarization.

Method mean IR
Framework Histogram 0.685
Extended FMoD 0.723
LMoD 0.740
SURF 0.484
LMoD+Trajectories 0.802
SURF+Trajectories 0.553
Global Histogram 0.571

TABLE II: A comparison of the mean execution time require-
ments per-frame for different video description and represen-
tation methods.

Method Mean time (msecs)
Framework Histogram 1077
Extended FMoD 1508
LMoD 1405
SURF 1208
LMoD+Trajectories 2204
SURF+Trajectories 1998
Global Histogram 706

summary consciseness. In order to most effectively compare
the different description and representation schemes in terms
of the achieved IR score, the actual number () of different
activity segments (known from the ground truth) was used as
K for each video. Codebook size ¢ was set to 80, while frame
partitioning depth d was set to 6 for global descriptors and
to 2 for LMoD. Block dimension, interest point sampling step
and luminance dispersion threshold were set to 25 pixels, 20
pixels and 20 standard deviation units, respectively, for LMoD.
Interest point tracking temporal window width T;, was set to
15 video frames for Trajectories, as in [16]. The experiments
were performed on a high-end PC, with a Core i7 @ 3.5 GHz
CPU and 32 GB RAM, while the codebase was developed in
C++.

Table I presents the IR scores, averaged over the entire
employed dataset, that were achieved by the competing ap-
proaches. Two global descriptors (Framework Histogram, ex-
tended FMoD), two local descriptors (SURF, LMoD) and two
composite schemes consisting of the local descriptors and the
presented per-frame activity descriptor (SURF+Trajectories,
LMoD+Trajectories) were compared. In the last case, the BoF-
derived histograms from the local and the activity descriptors
were concatenated before frame clustering. Additionally, a
traditional 16-bin global image histogram descriptor (omitting
the frame partitioning and the BoF representation stages) was
employed, for a total of 7 competing approaches. In all cases,
all discussed video frame channels (luminance, color hue,
optical flow magnitude map, edge map) were exploited through
description vector concatenation.

Table II presents the mean required execution times per-
frame (in milliseconds), over the entire employed dataset,
that were achieved by the competing approaches. These mea-
surements include the time necessary for all description and
representation stages for all image channels, as well as the
time needed for image channel computation per-frame.

As it can be seen, the proposed framework is outperformed



by the typically used global image histogram only when local
SUREF descriptors are used, which confirms the findings of [3].
In all other cases, the presented description and representation
schemes achieve higher performance, with Extended FMoD
being more successful than Framework Histogram and LMoD
providing the best results in both metrics. Additionally, the
Trajectories per-frame activity descriptor seems to beneficially
enrich the informational content of both employed local de-
scriptors (LMoD and SURF), resulting in the combination
LMoD+Trajectories being the best choice. Obviously, it is
reasonable that activity description aids the summarization
of activity videos. Not unexpectedly, this comes at the cost
of a threefold increase in required computational time in
comparison to the traditional global image histograms. This
indicates a typical trade-off between summarization quality and
computational requirements, with better performing descriptors
being more appropriate for off-line/non real-time applications.

The very low performance of SURF is of high interest,
since it validates our assumption that sparsely sampled and
highly invariant descriptors designed for recognition tasks
are not necessarily suitable for video summarization. This
fits with previous results in [3], which indicated that in the
absence of clear shot boundary information, global image color
histograms produced better results than SIFT and SURF. A
local descriptor that is holistic, according to our definition, and
densely sampled, i.e., LMoD, outperforms both approaches,
possibly because it captures spatial image properties lost in
the case of simple global histograms and information content
discarded by recognition-oriented local descriptors. Overall,
the presented framework seems to be more efficient when
employing holistic local descriptors.

IV. CONCLUSIONS

We have proposed a consistent video frame description
and representation framework based on spatial pyramid par-
titioning. It accommodates per-frame local, global and activity
descriptors, with the goal of assisting successful automated
summarization of human activity videos. The framework has
been objectively evaluated on a publicly available dataset
(IMPART), using the most common video summarization
method, i.e., video frame clustering. In all cases, several
image channels are being exploited (luminance, hue, edges,
optical flow magnitude) in order to simultaneously capture
information about the depicted shapes, colors, lighting, textures
and motions. In this context, the introduced Extended FMoD,
LMoD and Trajectories descriptors (specially adapted novel
extensions of pre-existing descriptors) outperform competing
approaches, with the LMoD+Trajectories combination proving
to be the most effective.
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