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ABSTRACT

A novel method is introduced for exploiting the support vec-
tor machine constraints in nonnegative matrix factorization.
The notion of the proposed method is to find the projection
matrix that projects the data to a low-dimensional space so
that the data projections between the two classes are separated
with maximum margin. Experiments were performed for the
task of eating and drinking activity classification. Experimen-
tal results showed that the proposed method achieves better
classification performance than the state of the art nonnega-
tive matrix factorization and discriminant nonnegative matrix
factorization followed by support vector machines classifica-
tion.

Index Terms— Non-negative Matrix Factorization, Sup-
port Vector Machines, Joint Optimization, Maximum Margin
Classification

1. INTRODUCTION

Activity recognition is a major research field with broad inter-
est. Apart from the recognition of the most common human
activities like walking, running, jumping, bending, sitting and
waving, eating and drinking activity recognition consists a re-
search area with a major application field, including monitor-
ing of patients with eating disorders. The implemented eating
and drinking activity recognition algorithms either use data
obtained from ambient or body-worn sensors, or visual infor-
mation obtained from one or more cameras. In this paper we
present a method that finds application in eating and drinking
activity recognition by exploiting only visual information ob-
tained from a single camera. The proposed method exploits
the maximum margin constraints of support vector machines
(SVMs) [1] in the objective function of nonnegative matrix
factorization (NMF) [2]. The intuition behind the proposed
framework is to find such a projection matrix that projects the
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data to a low-dimensional space so that the data projections
between the two classes are linearly separable with maximum
margin.

Given the nonnegative matrix X ∈ ℜN×M , NMF searches
for a pair of nonnegative matrices Z ∈ ℜN×L, H ∈ ℜL×M

whose product approximates X:

X ≃ ZH. (1)

X is the data matrix, whose column xj , j = 1 . . .M , repre-
sents the j-th element vector of dimension N . Z is a basis
matrix, that projects the data to a space with dimensional-
ity L. By setting L << N data dimensionality reduction
is achieved. Finally, H is the matrix of the data projections.
SVMs are employed on the projected data for classification.
The objective of SVM is to find the maximum-margin hyper-
plane, i.e., the hyperplane whose distance from the nearest
data of each class is maximal. The elements, whose removal
from the training data set change the maximum-margin hy-
perplane are called support vectors.

Several modifications of NMF and SVM exist, that im-
pose additional constraints to the objective functions of NMF
and SVM, respectively, for enhanced discrimination abil-
ity of the data projections, such as the discriminant NMF
(DNMF) [3] which incorporates the Fisher constraint, the
principal components analysis NMF (PCA-NMF) [4], which
maximizes the coefficient matrix covariance, the spatially
localized NMF (LNMF) [5], which imposes sparseness con-
straints to the basis matrix and the use of the separable case
approximation (SCA) algorithm [6], which computes the
SVM on the modified separable training data. In these meth-
ods, data representation (NMF) and classification (SVM)
occur in independent steps.

In this paper, data representation and classification are for-
mulated into a single objective function, whose optimization
aims the projection of the data in a space with reduced dimen-
sions, ensuring that the data projections are separated with
maximum margin. More precisely, the maximum-margin hy-
perplane is defined as a linear combination of the data projec-
tions hj , j = 1, . . . ,M and it is incorporated in the objective



function of NMF.

2. NMF WITH SVM CONSTRAINTS

Let D = {{xj , yj}, j = 1, ...,M,xj ∈ ℜN , yj ∈ {−1, 1}}
be the set of M training data, where xj denote the data points
and yj are the corresponding labels. In the standard approach,
first NMF is employed in order to find two nonnegative ma-
trices Z, H, that minimize the reconstruction error of the data
matrix X = [x1, . . . ,xM ]:

min
Z,H

∥X− ZH∥2 (2)

s.t. zil ≥ 0, hlj ≥ 0, (3)

where ∥ · ∥2 denotes the Frobenius norm, or equivalently,

min
zij ,hlj

{
xij ln

(
xij∑L

l=1 zilhlj

)
+

L∑
l=1

zilhlj − xij

}
(4)

s.t. zil ≥ 0, hlj ≥ 0, (5)

where (4) represents the Kullback-Leibler divergence be-
tween X and ZH. Then, SVM is performed on the projected
data hj = ZTxj in order to find the hyperplane that max-
imizes the margin 2

∥w∥ between the two classes or, equiva-
lently,

argmin
w

1

2
∥w∥22 (6)

s.t. yj(wThj + b)− 1 ≥ 0,∀j = 1, . . . ,M, (7)

where w is the normal vector to the hyperplane and b is the
bias. Taking into account the Lagrangian multipliers method
and the KKT conditions, the objective of SVM can be written
in the form:

min
aj

1

2

M∑
j=1

M∑
k=1

ajakyjykh
T
j hk −

M∑
j=1

aj

 (8)

s.t. aj ≥ 0,∀j = 1, . . . ,M, (9)

where aj are the Lagrange multipliers.
In this paper, we exploit the SVM constraints in the opti-

mization framework of NMF, i.e., we want to find a nonneg-
ative base matrix Z so that, the data projections hj minimize
the reconstruction error (4) and they are separated with max-
imum margin by the hyperplane w, which, according to the
representer theorem [7], lies in the span of the data projections
w =

∑M
j=1 ajyjhj . This is accomplished by combining the

cost functions (4) and (8) into a single objective function:

F (zil, hlj , aj) = λ
∑N,M

i,j

[
xij ln

(
xij∑

l zilhlj

)
+
∑

l zilhlj − xij

]

+
1

2

M∑
jk

akajykyj

L∑
l

hljhlk −
M∑
j

aj , (10)

which we want to minimize with respect to zil, hlj , aj , subject
to the constraints:

zil ≥ 0, hlj ≥ 0, aj ≥ 0, and
N∑
i=1

zil = 1, ∀l = 1, . . . , L.

(11)
The direct minimization of (10) is infeasible. However,

a local minimum of (10) can be found, by performing the
EM algorithm, since the objective function (10), subject to
the constraints (11), is convex with respect to either zil, hlj or
aj . This can be proved by showing that:

∂2

∂z2il
F (zil, hlj , aj)|hlj ,aj=constant ≥ 0 (12)

∂2

∂h2
lj

F (zil, hlj , aj)|zil,aj=constant ≥ 0 (13)

∂2

∂a2j
F (zil, hlj , aj)|zil,hlj=constant ≥ 0 . (14)

For simplicity in notation, we define:

F (zil) = F (zil, hlj , aj)|hlj ,aj=constant (15)
F (hlj) = F (zil, hlj , aj)|zil,aj=constant (16)
F (aj) = F (zil, hlj , aj)|zil,hlj=constant. (17)

Therefore, a local minimum of (10) can be found by mini-
mizing three auxiliary functions G(zil, z

(t)
il ), G(hlj , h

(t)
lj ) and

G(aj , a
(t)
j ) for the functions F (zil), F (hlj) and F (aj), re-

spectively. The function G(x, x(t)) is defined to be an auxil-
iary function for F (x) if G(x, x(t)) ≥ F (x) and G(x, x) =
F (x). It is proven in [8] that if G(x, x(t)) is an auxiliary func-
tion for F (x), then the minimization of G(x, x(t)) with re-
spect to x leads to minimization of F (x). As a consequence,
F (x) is monotonically decreasing under the update rule:

x(t+1) = argmin
x

{G(x, x(t))}. (18)

2.1. Minimization of F (zil, hlj , aj) w.r.t. zil

The function

G(zil, z
(t)
il ) = λ

∑
ij

(xij lnxij − xij)

−
∑
ijl

xij
z
(t)
il hlj∑

m z
(t)
imhmj

(
ln zilhlj − ln

z
(t)
il hlj∑

m z
(t)
imhmj

)

+
∑
ijl

zilhlj

+
1

2

M∑
jk

akajykyj

M∑
l

hljhlk −
M∑
j

aj (19)

is an auxiliary function for the cost function F (zil). The
derivation of (19) is straightforward from the derivation of
the update rule of zil in NMF [9]. The minimization of (19)



is performed by setting the partial derivative of G(zil, z
(t)
il )

with respect to zil to zero. As a result, F (zil) subject to the
constraints zil ≥ 0 and

∑L
l=1 zil = 1 is non-increasing under

the following update rules:

z
′(t+1)
il =

∑
j

xij
hlj∑

m z
′(t)
im hmj

1∑
j hlj

z
′(t)
il (20)

z
(t+1)
il =

z
′(t+1)
il∑N

i=1 z
′(t+1)
il

. (21)

2.2. Minimization of F (zil, hlj , aj) w.r.t. aj
The function

G(aj , a
(t)
j ) = λ

∑
ij

[
xij ln

(
xij∑
l zilhlj

+
∑
l

zilhlj − xij

)]

+
1

2

∑
jk

A+
jka

(t)
k

a
(t)
j

a2
j −

1

2

∑
jk

A−
jka

(t)
j a

(t)
k

×

(
1 + ln

ajak

a
(t)
j a

(t)
k

)
−
∑
j

aj , (22)

where Ajk = yjyk
∑

l hljhlk, A+
jk = max(Ajk, 0) and

A−
jk = max(−Ajk, 0), is an auxiliary function for the cost

function F (aj). The derivation of the auxiliary function (22)
is straightforward from the derivation of the update rules of aj
in SVM [10]. By setting the partial derivative of G(aj , a

(t)
j )

with respect to aj to zero, the following update rule for aj is
derived:

a
(t+1)
j =

1 +
√

1 + 4
∑

k A
+
jka

(t)
k

∑
k A

−
jka

(t)
k

2
∑

k A
+
jka

(t)
k

a
(t)
j . (23)

2.3. Minimization of F (zil, hlj , aj) w.r.t. hlj

The function

G(hlj , h
(t)
lj ) = G1(hlj , h

(t)
lj ) +G2(hlj , h

(t)
lj ), (24)

where

G1(hlj , h
(t)
lj ) = λ

∑
ij

(xij lnxij − xij)−
∑
ijl

xij

zijh
(t)
lj∑

m zimh
(t)
mj

×

(
ln zilhlj − ln

zilh
(t)
lj∑

m zimh
(t)
mj

)
+
∑
ijl

zilhlj

 , (25)

G2(hlj , h
(t)
lj ) =

1

2

∑
ljk

B+
jkh

(t)
lk

h
(t)
lj

h2
lj

−1

2

∑
ljk

B−
jkh

(t)
lj h

(t)
lk

(
1 + ln

hljhlk

h
(t)
lj h

(t)
lk

)
−
∑
j

aj , (26)

Bjk = ajakyjyk, B+
jk = max(Bjk, 0) and B−

jk = max(−Bjk,
0) is an auxiliary function for the cost function F (hlj). The
derivation of the auxiliary function (24)-(26) is straightfor-
ward from the derivation of the update rules of hlj in NMF
[9] and aj in SVM [10]. By setting the partial derivative of
G(hlj , h

(t)
lj ) with respect to hlj to zero, the following update

rule for hlj is derived:

h
(t+1)
lj =

−λ+

√√√√λ+4
∑

k B+
jkh

(t)
lk

(
λ
∑

i xij
zil∑

m zimh
(t)
mj

+
∑

k B−
jkh

(t)
lk

)
2
∑

k B+
jkh

(t)
lk

h
(t)
lj

(27)

2.4. Minimization of F (zil, hlj , aj) w.r.t. zil, hlj and aj

Based on the analysis in subsections 2.1-2.3, the cost func-
tion F (zil, hlj , aj) (10) is non-increasing under the iterative
update rules (20), (21), (23) and (27). In each iteration, the
update rules are computed sequentially, until the cost function
converges to a minimum, i.e, when the change in the value of
F (zil, hlj , aj) drops under a threshold. Experimental results
showed that the convergence of F (zil, hlj , aj) occurs in ap-
proximately 1000 iterations. In equation (10), λ is a factor
that regulates the significance of the NMF part in the objec-
tive function. During the first iterations λ takes large values,
increasing the significance of the correct data representation.
λ decreases exponentially with the number of iterations t, ac-
cording to λ0/(1+e)t, where the parameter e << 1 regulates
the decrease rate. λ plays an important role in the classifica-
tion decision. Experimental results showed that typical values
for λ0 are λ0 = 100 or λ0 = 1000, while the decrease rate e
takes values in the range from 10−3 to 10−2.

When the algorithm converges, the train data are projected
to the reduced dimensional space using the transpose base
matrix ZT . Alternatively, the data projections hj can be esti-
mated using the pseudo-inverse Z† = (ZTZ)−1ZT , or by the
multiplicative update rule (27). The maximum margin hyper-
plane of SVM is computed by:

w =

M∑
j=1

ajyjhj (28)

b =
1

|MSV |
∑

j∈MSV

(
wThj − yj

)
(29)

where MSV denotes the set of support vectors and, finally,
the classification decision is taken according to

yj = sign
(
wThj + b

)
. (30)

3. EXPERIMENTAL RESULTS

In this section, an experimental evaluation of the proposed
NMF with SVM constraints optimization framework is pre-
sented. First, the influence of the imposition of the SVM con-
straints to the cost function of NMF is examined on toy data.
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Fig. 1. Data projections of (a) NMF with SVM constraints
and (b) NMF followed by SVM

Then, the classification performance of the proposed method
on the AIIA/MOBISERV database for eating and drinking ac-
tivity recognition is presented.

3.1. Toy Data

The influence of the SVM constraints to the objective func-
tion of NMF is examined in a set of toy data that lie in the
10-dimensional space. The toy data belong to two overlap-
ping classes that have Gaussian distributions with mean vec-
tors m1 = 10110 and m2 = 12110, respectively, where 110

denotes the 10-dimensional vector of ones, and covariance
matrices Σ1 = Σ2 = 1.5I10, where I10 ∈ ℜ10×10 denotes
the identity matrix. For each class 100 samples were ran-
domly generated. For visualization reasons, the samples are
projected to the two-dimensional space. The scatter plot of
the data projections H after 2000 iterations of the update rules
(20), (21), (23) and (27), as well as the maximum-margin hy-
perplane (28)-(29) are depicted in Figure 1a, while Figure 1b
depicts the data projections and the maximum-margin hyper-
plane produced by the state-of-the-art NMF followed by SVM
formulation. From comparison of Figures 1a and 1b we notice
that, the imposition of the SVM constraints to the objective
function of NMF enforced the linear separation of the pro-
jected data. The classification accuracy of the proposed NMF
with SVM constraints method is 100%, while the classifica-
tion accuracy of the state-of-the-art NMF followed by SVM
method is 94%.

3.2. AIIA/MOBISERV database

The performance of the proposed NMF with SVM constraints
algorithm was tested in the task of eating and drinking activ-
ity recognition. Eating and drinking recognition finds appli-
cation in nutrition assistance systems for frail groups, such as
elderly population in the early stage of dementia. The exper-
iments were conducted in the AIIA/MOBISERV eating and

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. MHIs of videos depicting eating with (a) spoon, (b)
cutlery, (c) fork, (d) one hand, (e) two hands, and drinking
from (f) cup, (g) glass, (h) straw.

Table 1. Classification accuracy (%) of NMF followed by
SVM, DNMF followed by SVM and NMF with SVM con-
straints, algorithms for the AIIA/MOBISERV Database

NMFthenSVM DNMFthenSVM NMFwithSVM
78.32% 64.60% 79.42%

drinking activity recognition database1. The database con-
tains videos of 12 persons, 6 males and 6 females, with differ-
ent facial characteristics (eyeglasses, beard, etc.). Each per-
son was recorded in four meal sessions that took place in four
different days. Each meal session depicts a person eating with
a spoon, cutlery, a fork, one and both hands and drinking from
a cup, a glass and a straw. Skin color segmentation was per-
formed in each video, creating binary masks [11]. Finally, the
Motion History Images (MHI) [12] (Figure 2) of each activity
were extracted and down-scaled to 32 × 32 pixels. In total,
3969 MHIs where created.

The algorithm performance was tested by using the MHIs
as the video features and the leave-one-day-out cross valida-
tion method, i.e. 25% of the samples were used for testing.
The classification accuracy of the proposed method was com-
pared to the performance of the state-of-the-art NMF, as well
as the discriminant NMF (DNMF) [3], which is a popular
variant of NMF, followed by SVM classification. The clas-
sification accuracies are shown in Table 1. We notice that,
the proposed method achieves the highest classification accu-
racy of 79.42%, followed by the standard NMF followed by
SVM classification (78.32%). The classification performance
of DNMF followed by SVM has the lowest accuracy of only
64.60%, since it exploits sparse information for data repre-
sentation that is not discriminative for the specific task.

4. CONCLUSIONS

In this paper a novel method was introduced that finds a
nonnegative projection matrix which projects the data to a
low-dimensional space, so that the data projections between
the two classes are linearly separable with maximum margin.
Experimental results on toy data and eating/drinking activity
recognition showed the supremacy of the proposed method
with respect to the state of the art NMF and DNMF followed
by SVM classification.

1http://www.aiia.csd.auth.gr/MOBISERV-AIIA/
index.html
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