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ABSTRACT

The efficient search and retrieval of the increasing volume of
stereoscopic videos drives the need for the semantic descrip-
tion of its content. The derivation of disparity (depth) infor-
mation from stereoscopic content allows the extraction of se-
mantic information that is inherent to 3D. The purpose of this
paper is to propose algorithms for semantically characterizing
the motion of an object or groups of objects along any of the
X , Y , Z axes. Experimental results are also provided.

Index Terms— Semantic labelling, stereo video, motion
characterization.

1. INTRODUCTION

In the recent years, the number of produced 3D movies and
3D (stereoscopic) video content in general has been grow-
ing significantly. Indeed, a large number of 3D movies have
been released and some of them, such as Avatar [11] were
huge box-office hits. This, along with the increasing penetra-
tion of 3DTV sets in the market, have boosted the delivery of
3D productions, such as movies and documentaries to home
through 3DTV channels or Blu-ray disks [3]. Since 3DTV
content is now widely available, it must be semantically de-
scribed towards its archiving, fast search and retrieval. Ob-
ject motion characterization, in the world (video acquisition)
space is an important type of semantic description that one
can derive. In this paper, we focus on 3D motion description
in stereo video content and propose algorithms for semantic
labelling of human, object or object groups motion. Typically,
stereo video is shot with a stereo camera, whose parameters
include the focal length and the baseline [5], and displays ob-
jects residing and moving in the world space (Xw, Yw, Zw).
We utilize the depth information which is implicitly available
through disparity estimation between the left and right views
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and examine various cases, where camera calibration infor-
mation may or may not be available. For example, we can
characterize video segments where an object approaches the
camera or where two objects approach each other in the real
world. Such characterization is not possible in classical single
view video, without resorting to other side information to get
3D position/motion clues [5]. The derived semantic descrip-
tion is useful in various applications, such as 3D/3DTV video
archival and retrieval. The paper extends the work in [7] by
including the study of motion captured by calibrated cameras.

The rest of paper is organized as follows. In section 2, al-
gorithms for characterizing object and object groups motion
are proposed. In section 3, experimental results for motion
characterization are presented. Finally, in section 4, conclud-
ing remarks are given.

2. SEMANTIC OBJECT MOTION DESCRIPTION

In this section, we will present a set of methods for character-
izing object motion in stereo video. In our approach, an object
e.g., an actor’s face in a movie or the ball in a football game, is
represented by two regions of interest (ROI, bounding box) in
the left and right video frames. These ROIs may be generated
in every frame by a combination of object detection (or man-
ual initialization) and tracking [14]. Stereo tracking can be
performed as well for improved performance [13]. A rectan-
gular ROI can be represented by two points p1 [xleft, ytop]

ᵀ

and p2 [xright, ybottom]
ᵀ namely its upper left and lower right

corners. It must be noted that, in most cases, camera parame-
ters are unknown. In such cases, object motion characteriza-
tion is based only on object ROI position and motion in the
left and right image planes.

Object disparity can be evaluated inside the ROI by using
a disparity estimation algorithm [12] that generates dense or
sparse disparity maps [10]. Such maps can be used to obtain
an ’average’ object disparity, e.g. by averaging image dispar-
ity over the object ROI [7]. Alternatively, gross object dispar-
ity estimation can be a byproduct of the tracking algorithm
based e.g. on left/right view SIFT point correspondences [2].



Table 1. Labels characterizing movement of an object.
Slope value negative positive close to zero
Horizontal movement left right still horizontal
Vertical movement up down still vertical
Movement along the depth axis backward forward still depth

In the proposed object motion characterization algorithms,
a ROI is represented by its center coordinates along x and y
axis, its width and height (if needed) and an overall (’aver-
age’) disparity value. In order to obtain a less noisy over-
all object disparity value from the object ROI, we first use
a pixel trimming process [9], in order to discard pixels that
do not belong to the object, since the ROI may contain, apart
from the object, background pixels. Pixel trimming first com-
putes the mean disparity dm using all pixels inside a central
region within the ROI. A pixel within the ROI is retained for
subsequent calculations, only when its disparity value is in
the range [dm-a,dm+a], where a is an appropriately chosen
threshold. Our experiments showed that a value of a = 5 is
effective for most small sized objects such as faces. Then,
the trimmed mean disparity value dα of the retained pixels is
computed [7, 9].

2.1. Object motion characterization

We examine the case of a parallel camera setup. If the camera
parameters (the focal length f and baseline Tc) are known,
the world space coordinates (Xw, Yw, Zw) of a point can be
recovered from its left (plc =

[
xlc, y

l
c

]ᵀ
) and right (prc =

[xrc , y
r
c ]

ᵀ) frame projections, as follows [12]:

Zw = −fTc
dc

, (1)

Xw = −Tc(x
l
c + xrc)

2dc
, Yw = −Tcy

l
c

dc
= −Tcy

r
c

dc
(2)

where dc = xrc − xlc is the stereo disparity. If the stereo cam-
era parameters are known, then the true 3D object position in
the world coordinates can be found, using (1), (2) for the ob-
ject ROI center. In order to characterize object motion with
unknown camera parameters, they are ignored, i.e. both f
and Tc are set to 1 since they do not affect the direction of
motion in each axis. Furthermore, we examine the motion
separately on the x and y axes in the image plane and in the
depth space using object disparities. Specifically, we use the x
and y coordinates of the ROI center [xcenter (t) , ycenter (t)]

ᵀ

in both channels within (2) for evaluating horizontal and ver-
tical object position and the trimmed mean disparity value dα
within (1) for evaluation the object’s position along the depth
axis over a number of consecutive video frames. To perform
motion characterization, we use first a moving average filter
of appropriate length, in order to smooth the signals Xw (t),

Yw (t), Zw (t) over time [6]. Then, the filtered signal is ap-
proximated, using, e.g., a linear piece-wise approximation
method [8]. The output of the above process is a sequence
of linear segments, where the slope of each linear segment
indicates the respective object motion type, such as left/right,
up/down or backward/forward (in depth) movement. Depend-
ing on whether the slope has a negative, positive or close to
zero value, respective movement labels can be assigned for
each movement, as shown in Table 1. The duration of a spe-
cific motion type is defined by the respective linear segment
duration. If too short linear segments are found (a few frames)
they can be regarded as noise.

2.2. Motion characterization of object groups

Two (or more) objects or persons may approach or move away
from each other. For the motion characterization of groups of
objects, we shall examine two different cases, depending on
whether camera calibration data are known or not.

2.2.1. Uncalibrated cameras

If camera parameters are not available, 3D world coordinates
can not be computed. Thus, group object motion can only be
labelled independently along the spatial (image) x, y axes and
along the ’depth’ axis (using the trimmed average disparity
values). For the ith object and a number of consecutive video
frames (1 . . . N), the ROI center coordinates of the left and
right channels are combined into:

Xi
center (t) =

xilcenter (t) + xircenter (t)

2dαi
,

Y i
center (t) =

yicenter (t)

dαi
.

The Euclidean distances between two objects i, j located at

pi =
[
Xi
center, Y

i
center

]ᵀ
and pj =

[
Xj
center, Y

j
center

]ᵀ
and

having the respective disparity values dαi and dαj are com-
puted as follows:

Dxy (t) =
[
(Xi

center (t)−Xj
center (t))

2

+(Y i
center (t)− Y j

center (t))
2
]1/2

, (3)

Dd (t) =
[
(dαi (t)− dαj (t))

2
]1/2

. (4)

The resulting two signals are filtered and approximated
by linear segments, as described in the previous subsection.



Table 2. Labels characterizing the 3D motion of object ensembles without using calibration parameters.
Slope value negative positive close to zero
xy movement approaching xy moving away xy equidistant xy
Depth movement approaching depth moving away depth equidistant depth

Similarly, depending on whether the linear segment slope has
a negative, positive or close to zero value, a movement label,
such as approaching or moving away in the xy (image) plane,
can be assigned, as shown in Table 2.

Even in the absence of camera parameters, disparity in-
formation can help in inferring the relative motion of two ob-
jects in the 3D space in certain cases: if both Dxy and Dd

decrease/increase, the objects come closer/move away in the
3D space. However, in such a case no Euclidean distance (e.g.
in meters) can be found.

The same procedure can be extended to the case of more
than two objects: we can characterize whether their geomet-
rical positions converge or diverge. To do so, we can find the
dispersion of their positions vs their overall center of gravity
in the xy domain (Xcenter and Y center) and in the ’depth’
domain (dα):

Dxy (t) =

[
N∑
i=1

[(
Xi
center (t)−Xcenter (t)

)2
+
(
Y i
center (t)− Y center (t)

)2]]1/2
, (5)

Dd (t) =

[
N∑
i=1

(dαi (t)− dα (t))
2

]1/2
. (6)

and then perform the above mentioned smoothing and lin-
ear piece-wise approximation.

2.2.2. Calibrated cameras

When camera calibration parameters are available, the world
coordinates [Xw, Yw, Zw]

ᵀ of an object, that is described by
the respective ROI center [xcenter, ycenter]

ᵀ and trimmed mean
disparity value dα, can be computed by using (1) and (2).
Consequently, the actual distance between two objects, which
are represented by the two points

[
X1
w, Y

1
w , Z

1
w

]
and[

X2
w, Y

2
w , Z

2
w

]
, can be calculated by using the Euclidean dis-

tance in the 3D space:

D (t) =
[
(X1

w (t)−X2
w (t))2

+ (Y 1
w (t)− Y 2

w (t))2

+(Z1
w (t)− Z2

w (t))2
]1/2

. (7)

Then, the same approach using smoothing and linear piece-
wise approximation can be used for characterizing the motion
of two objects with labels ”approaching”, ”moving away” and

”equidistant” when the slope of D is negative, positive and
zero, respectively.

3. EXPERIMENTAL RESULTS

To evaluate the proposed method we performed experiments
on a set of stereo videos recorded with a stereo camera with
known calibration parameters, i.e. a camera with parallel ge-
ometry, a focal length of 34.4 mm and baseline equal to 140
mm. In each video two persons are walking. The produced
dataset consists of three different categories of persons’ tra-
jectories.

(a) Frame 12 (b) Frame 60

(c) Frame 80 (d) Persons’ trajectories

Fig. 1. Example frames and the trajectories of the persons for
the first category of videos.

In the first category of videos the subjects stand facing
each other and start walking parallel to the camera, approach-
ing one another up to the middle of the path and then moving
away. In Figure 1, three representative frames of such a video
and a diagram which shows the trajectories of the persons on
the xz plane (top view) are displayed.

In the second category of videos (Figure 2), the persons
walk diagonally, following an X-shaped path. Again, the two
subjects are approaching one another on their way up to the



middle of the path and then start moving away.

(a) Frame 12 (b) Frame 60

(c) Frame 80 (d) Persons’ trajectories

Fig. 2. Example frames and the trajectories of the persons for
the second category of videos.

In the third category of videos, the subjects follow an el-
liptical path as depicted in Figure 3. In the beginning they
stand at the major axis of the ellipse and start moving clock-
wise. For a small number of frames their distance is almost
constant and their movement can be considered as equidistant.
Then, moving up to the minor axis of the ellipse they are ap-
proaching one another and afterwards they start moving away.
Reaching again the major axis their distance remains almost
constant again for a small time period and their movement can
again be considered equidistant. Continuing their movement
they start approaching and then moving away until they reach
their initial positions.

Disparity maps for each of the videos described above
were extracted by using the algorithm [4] that is part of the
OpenCV library [1]. A typical example of a left and right
frame of the video with the respective disparity maps is pre-
sented in Figure 4. The two persons were tracked by using
the tracking algorithm described in [13], applied separately
on each channel.

The unknown camera parameters case was examined by
performing single object motion characterization on the woman
in the video depicted in Figure 3. The focal length and cam-
era baseline values were set to 1 (f = 1 and Tc = 1). The
results for the characterization along the X axis are shown in
Figure 5.

(a) Frame 20 (b) Frame 70

(c) Frame 180 (d) Persons’ trajectories

Fig. 3. Example frames and the trajectories of the persons for
the third category of videos.

(a) Left frame (b) Right frame

(c) Left disparity maps (d) Right disparity maps

Fig. 4. Sample video frames and their disparity maps.
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(f)

Start frame End frame Label
1 93 right

94 189 still
190 252 left
253 285 still

(g)

Fig. 5. (a) Trajectory calculated by our method , (b) the result of linear approximation, and (c) the generated labels for the
movement along the X axis for the video depicted in Figure 3.

(a) (b)

Start frame End frame Label
1 48 approaching

49 56 equidistant
57 90 moving away

(c)

Fig. 6. (a) Distances in 3D space calculated by our method, (b) the result of linear approximation, and (c) the generated labels
for the video depicted in Figure 1.



For all three videos depicted in Figures 1 - 3 object motion
characterization with known parameters was performed.

For the video in Figure 1 the distances calculated, the out-
put of the linear approximation process and the derived labels
are shown in Figure 6. Every line segment represents one of
the three possible relative movements, “approaching”, “mov-
ing away” and “equidistant”. Results for videos in Figures 2
and 3 are shown in Figures 7 and 8 respectively.

(a)

(b)

Start frame End frame Label
1 71 approaching

72 75 equidistant
76 105 moving away

(c)

Fig. 7. (a) Distances in 3D space calculated by our method,
(b) the result of linear approximation, and (c) the generated
labels for the video depicted in Figure 2.

By comparing the movement of persons in the three dif-
ferent cases with the computed results one can see that the
method works properly.

(a)

(b)

Start frame End frame Label
1 7 equidistant
8 61 approaching

62 93 moving away
94 152 equidistant

153 216 approaching
217 261 moving away
262 285 equidistant

(c)

Fig. 8. (a) Distances in 3D space calculated by our method,
(b) the result of linear approximation, and (c) the generated
labels for the video depicted in Figure 3.



4. CONCLUSION

In this paper, an algorithm is presented that characterizes an
object’s motion in stereo video content along the horizon-
tal, vertical and depth axis and assigns labels such as moving
left/right or backwards/forward. In addition, approaches for
characterizing the relative movement (approaching, moving
away) of objects in the 3D space (when calibration parame-
ters are available) or in the xy (image) plane and the depth
dimension (when no calibration parameters are available) are
presented. The proposed algorithms make use of disparity in-
formation derived from the stereoscopic videos.
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