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Abstract. Multi-label problems arise in different domains such as dig-
ital media analysis and description, text categorization, multi-topic web
page categorization, image and video annotation etc. Such a situation
arises when the data are associated with multiple labels simultaneously.
Similar to single label problems, multi label problems also suffer from
high dimensionality as multi label data often happens to have large num-
ber of features. In this paper, the Direct Multi-label Linear Discriminant
Analysis method is proposed for dimensionality reduction of multilabel
data. In particular we extend Multi-label Discriminant Analysis (MLDA)
and modify the between-class scatter matrix in order to improve classifi-
cation accuracy. The problem that Direct MLDA overcomes is the limi-
tation of the produced projections that in MLDA are defined as K —1 for
a K class problem. Experimental results on video based human activity
recognition for digital media analysis and description as well as on other
challenging problems indicate the superiority of the proposed method.

Keywords: Direct Multi-label Discriminant Analysis, Dimensionality
Reduction, Multi-label classification, Activity recognition, Video
analysis.

1 Introduction

In recent years, with the development of the internet and the technologies used
for media production, the amount of available information has been increased
dramatically. The main problem of the huge amount of information is how the
user can interpret the content of the information and how he can retrieve suc-
cessfully the information he is interested in. Moreover, big data problems arise
in several steps of the media production chain. Pictures, videos, texts, music can
contain information on various topics. The user can not be sure that the correct
information will be retrieved. This is the reason why it is necessary to classify
the information into categories. The most popular way of classification is label
classification. The label is attached to the item, indicating the category that
the item belongs to. In label classification there are two categories, single-label
classification and multi-label classification. The first refers to problems when
each instance is associated with one label and the second when each instance
is associated with multiple different categories. In most cases, items belong to
the second category. For example in music information retrieval, a song could
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belong to categories such as piano, classical music and Mozart. The interest of
researchers on multi-label learning has increased due to the large number of ap-
plications, multi label data are associated with. Multi-label learning algorithms
are examined in [I], [7], multilabel semantic image annotation methods are pre-
sented in [2], [3], [5]. In [22] music is categorized into emotions. Gene and protein
function prediction are proposed in [4].

The curse of dimensionality often causes serious problems when high dimen-
sional data are used for learning, and thus a lot of dimensionality reduction
methods have been developed. Depending on whether the label information is
used, those methods can be classified into two categories, supervised and unsu-
pervised. In unsupervised learning, label information is not provided. There are
two options available in order to reduce the dimensionality of multilabel data.

In the first approach, any unsupervised dimensionality reduction method built
for single label problems can be used. A representative of unsupervised dimen-
sionality reduction methods is Principal Component Analysis (PCA) that tries
to find those projections that maximize the variance among data. Random
Projection [17] is another method that projects the data on a random lower-
dimensional orthogonal subspace that captures as much of the variation of the
data as possible. Latent semantic indexing (LSI) [I8] can also be used directly
in multilabel data. LST is widely applied to documents analysis and information
retrieval. To apply LSI, documents are represented in a vector space model, and
Singular Value Decomposition (SVD) is performed to find the sub-eigenspace
with large eigenvalues. Partial least squares (PLS) [12] can also be applied di-
rectly to multi-label data by ignoring label correlation.

The second approach uses the provided labels in order to find a projection
that enhances discriminality between labels. Multi-Label Dimensionality Re-
duction via Dependence Mazimization (MDDM) [14] projects the original data
into a lower-dimensional feature space maximizing the dependence between the
original feature description and the associated class labels. Multi-label latent
semantic indexing (MLSI) [I5] is an extend of LSI so that it can properly
manage multilabel data. A representative of supervised dimensionality reduc-
tion method is Linear Discriminant Analysis (LDA), which aims at identifying
a lower-dimensional space minimizing the inter-class similarity while maximiz-
ing the intra-class similarity. LDA cannot be directly applied to multilabel data,
thus an extend of LDA is proposed in [I3], named Multi label Discriminant Anal-
ysis MLDA that takes advantage of label correlation between label sets of multi
label data.

Multilabel learning considers both multi-label classification (MLC) and label
ranking (LR). MLC is concerned with learning a model that outputs a bipartition
of the set of labels into relevant and irrelevant with respect to a query instance.
LR extends conventional multiclass classification in the sense that it gives an
ordering of all class labels. We can group the existing methods for multi-label
learning problems into two main categories a) transformation methods and b)
adaption methods [7]. The first approach transforms the multilabel classification
problem into one or more single label classification, regression or ranking task.
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The second approach extends specific learning algorithms in order to handle
multilabel data directly. The most popular approach as a transformation method
is Binary Relevance (BR) [1]. BR creates k datasets each for one class label and
trains a binary classifier, one for each different dataset. In [§] Calibrated Label
Ranking (CLR) is proposed. A label ranking method is able to predict a ranking
of all topics in decreasing order of relevance to a specific instance but it is not able
to distinguish between the sets of relevant and non-relevant topics. To overcome
this problem CLR adds an extra label to the original label set which is interpreted
as "neutral element”. ML-kNN [9] adapts lazy learning techniques to solve multi-
label problems. To identify the label set for a given instance it uses mazimum a
posteriori (MAP), based on prior and posterior probabilities for each k nearest
neighbor label. BP-MLL [19] is an adaptation of back-propagation algorithm
for multi-label learning. The algorithm introduces a new error function that
takes multiple labels into account. Multi-label perceptron based algorithms have
also been extended for multi-label learning. Multi-class Multi-layer Perceptron
(MMP) is proposed in [10] where the perceptron algorithms weight update is
performed in such a way that it leads to correct label ranking. Support Vector
Machine (SVM) is used in [I1] where RankSVM is proposed. RankSVM defines
a specific cost function and the corresponding margin in order to solve multilabel
problems. In this paper we extend MLDA and propose the Direct Multi-label
Discriminant Analysis method for dimensionality reduction of multi-label data.
MLDA cannot find a space with a larger dimensionality than the number of the
labels. The proposed method overcomes this limitation and projects data onto a
subspace that gives more than K —1 dimensions. This way we can find a reduced
space that improves classification accuracy.

2 Direct Multi-label Discriminant Analysis

The proposed Direct MLDA extends MLDA by modifying the between class
scatter matrix in order to improve classification accuracy. Given a multi label
data set with n samples {x;,y;}?; and K classes where x; € R? and y; €
{0, 1}5 y;(k) = 1 if x; belongs to the k-th class, and 0 otherwise. Let the input
data be partitioned into K groups as {ﬂ'k}szl where 7, denotes the sample
set of the k-th class with nj data points. We write X = [x1,...,%,]|7 and
Y =[yi,...,ya)T = [Y(1),---» ¥ (k)] where y; € {0,1}" is the class-wise label
indication vector for the k-th class.

In order to improve classification accuracy multi-label learning takes into ac-
count label correlation that takes advantages of label interactions. The label
correlation between two classes is formulated as following [16]:

<y k)Y >
Cri = cos(yry,y)) = \|y(;))lllly(<z>||' N

In this Section, we discuss MLDA in Section 2.1 and in Section 2.2 we propose
Direct MLDA for dimensionality reduction of multilabel data.
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2.1 Multi-label Linear Discriminant Analysis

Multi label Linear Discriminant Analysis (MLDA) is a multi-label version of
Linear Disriminant Analysis (LDA) that has been adapted for multilabel data.
The proposed scatter matrices are calculated class-wise as:

K n
= 2815 = (22 v ) tme = m)om — )" ®)
k=1 i=1

K n
Su=>_SP. SF = "Viu(x; — my)(x; —my)". (3)

k=1 i=1
where my, is the mean vector of class k and m is the multi-label global mean
vector. MLDA takes advantage of label correlation (Il), and constructs the cor-
relation matrix C € RE*X to define the correlations between labels. Moreover
solves the over-counting problem, when a datapoint x; is used more than once
on the calculation of the scatter matrices, by the following normalized matrix

Z=z1,...,2,)7 € RVEK:
2= T (4)
Iyillex

where ||.||¢1 is the ¢1-norm of a vector. In equations ([2]) and [B]) Y is replaced by
Z

MLDA projects the original data X onto a lower ¢g-dimensional feature space
by taking into account both the within-class scatter matrix and the between-
class scatter matrix. MLDA tries to minimize S,, in order to keep each class
compact and maximize S; in order to separate classes as much as possible. Thus
the following criterion is maximized:

_ tr{GTS,G}
= 1 {GTS,G} 5)

where G the transformation matrix that consists of ¢ eigenvectors g that corre-
spond to the ¢ largest eigenvalues of the eigenanalysis problem, S,'S,g = \g.

2.2 Direct Multi-label Discriminant Analysis

A very strong limitation that MLDA suffers from, is the number of the produced
projections that are defined as K — 1 for a K class problem. Indeed, the between
scatter matrix as defined in 2 is comprised of K rank 1 matrices that consider
only the mean vectors for each label and the global mean vector. This can be
interpreted as information less in the definition of S, since the data samples
are represented by their mean vectors. This representation results to a low rank
matrix S, that can produce at most K — 1 projections for dimensionality re-
duction. Direct MLDA overcomes this problem and searches for a subspace that
gives more than K — 1 dimensions and better classification accuracy. In Direct
MLDA the definition of the between-class scatter matrix S, changes in order to
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distinguish data that do not have a specific label from the mean vector of the
data belong to this label. Sy is defined as:

n

K
Sy = 87,8 =371 - Vi) (xs — my)(x; — my) 7 (6)
k=1

i=1

The definition of the within-class scatter matrix remains the same as we try to
minimize the covariance of data that belong to the same class.

K

S, =Y SIS ="V (x; — my)(x; — my)" (7)
k=1 =1

where my, is the mean vector of class k which is defined as:

_ Z;L:l Y;kxi
Z?:1 Yie

Direct MLDA projects the original p-dimensional feature vectors into a new
reduced ¢-dimensional feature space while keeping the discrimination informa-
tion between classes. We wish to determine a transform w; = GTx;, where
G = [g1,82,--.,8q| the projection matrix, such that the projected classes are
well separated. After the projection onto g; the between-class scatter matrix
is defined as S7* = gl'Syg; and the within-class scatter matrix is defined as
S9 = gI'S, g;. To enhance the separability of the classes we wish to maximize
S7* and keep each cluster compact by minimizing S, thus the following criterion
function should be maximized:

my

(®)

_ gtT Svgt 9)

gtTSwgt
We wish to maximize criterion J for each g; of matrix G, thus we define the
following eigenanalysis problem:

S, 'Svg = \g. (10)

The projections vectors of Direct MLDA are the ¢ eigenvectors g; corresponding
to the ¢ largest eigenvalues of S;'S;. Label correlation was also examined in
Direct MLDA according to (Il) and the over-counting problem was solved similar
to MLDA by the following normalized matrix Z = [z1,...,2,]T € R"*K:

Cy;

Z; — .
" lyille

(11)

where ||.||¢1 is the £1-norm of a vector. In equations (@) and () Y is replaced
by Z.
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3 Experimental Results on Video Analysis

The proposed approach has been applied to several challenging problems that
arise in digital media analysis and description. That is, in digital video analysis
one objective is to annotate the video according to the appearances of the actors
and to automatically recognize their faces [25], their activities [26] or even their
facial expression [27]. All these recognition problems refer to the same multi-
label video data and thus, it would be useful to reduce the video dimensionality
keeping the discriminality for each label.

Performance evaluation in multi-label learning is more complicated than tra-
ditional single label classification as multi-label data are associated with more
than one label simultaneously. The multi-label evaluation metrics that are used
in this paper consider the performance of label set prediction as well as the
performance of label ranking. For the evaluation of label prediction macro (Pre-
cision, Recall, F-measure, Accuracy) and micro (Recall, F-measure, Accuracy)
measures were used that average difference of the actual and the predicted sets of
labels over all labels (micro measures) or for each label and subsequently average
over all labels (macro measures). Hamming Loss was also used to evaluate the
fraction of misclassified instance-label pairs. For the evaluation of label ranking
One Error, Coverage, Ranking Loss and Average Precision were used. One error
evaluates the fraction of examples whose top-ranked label is not in the relevant
label set. Coverage evaluates how far on average a learning algorithm needs to
move down in the ranked label list in order to cover all the relevant labels of
the example. Ranking Loss evaluates the fraction of reversely ordered label pairs
and Average Precision computes for each relevant label the fraction of relevant
labels ranked higher than it, and finally averages over all relevant labels.

S DirecLDA|
18 —o—MLDA

10 20 3%

—— DirecMLDA
—o— oA

10 20 0 40 s 6 70 80 % 10
Number of Dynemes.

Fig. 1. Performance of MLDA and Direct MLDA for different evaluation metrics and
number of dynemes for the database i3DPost mask
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To examine Direct MLDA performance we used the following databases that
refer mostly to multi-label activity recognition for video analysis:

i3DPost [20] is an image sequence database that contains 64 high-resolution
image sequence of eight persons performing eight actions and two person inter-
action. Eight cameras having a wide 45° viewing angle difference was used to
provide 360° coverage of the capture volume. Mobiserv|24] is an image sequence
database, that depicts twelve persons performing three actions activities ”eat”,
”drink” and ”apraxia”. The total number od activity video is 954.
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Fig. 2. Performance of Direct MLDA for different number of projections and metrics

IXMAS[21] database contains 330 low resolution image sequences of ten per-
sons performing eleven activities. Each sequence has been captured by five cam-
eras. The persons freely change position and orientation.

The activity representation of those databases was formed with the use of
dynemes that refer to sequences of movement primitives. By calculating the
similarity from multi-view dynemes the final representation of human activity
was formed. We used 5-fold cross validation to evaluate the performance of the
proposed approach to those databases for different number of dynemes [24]. In
all these activity video datasets there are multiple labels per sample (i.e., video)
that correspond to the identity of the person performing the activity, the different
activity type and the different camera view. That is, the proposed approach is
tested on recognizing simultaneously the correct person id, the correct activity
and the correct camera view using the same dyneme based representation and
the direct MLDA for dimensionality reduction.

Emotion [22] categorizes 593 songs into 6 emotions. A 5-fold cross validation
was also used on Emotion database.

Reference [23] database, from Yahoo dataset refers to multi-label web pages.
In Reference’s label set we removed topics with less than 100 web pages. The
high dimensionality was reduced using Random Projections.

Multi-label K-Nearest Neighbor (ML-KNN) was used for classification after
dimensionality reduction by MLDA and Direct MLDA. The selected number of
K-Nearest Neighbors was defined to 5.

Evaluation of MLDA and the proposed Direct MLDA are depicted in
Tables [[l and 2l The results show that Direct MLDA is superior to MLDA in
terms of both label prediction and label ranking. Although Direct MLDA can



Direct Multi-label Linear Discriminant Analysis 421

project data to more than K — 1 projections to improve classification accuracy,
we prove that Direct MLDA is superior to MLDA also for K — 1 projections. In
Figure [l we project the original database onto a K — 1-dimensional space in both
cases (MLDA, Direct MLDA) and show that Direct MLDA gives better results
for the database i8DPost mask for different number of dynemes for different
evaluation metrics. In Figure Bl performance of Direct MLDA for Reference is
presented for different number of projections for the evaluation metrics Average
Precision, OneError and Hamming Loss.

Table 1. Performance evaluations of MLDA and Direct MLDA for i3DPost mask,
13D Post stips and mobiserv databases

i3DPost mask (180) i3DPost STIPs (30) mobiserv (50)
MLDA DMLDA (k-1) MLDA DMLDA (K+5) MLDA DMLDA (K1)

Fl-macro 1 0.4940 0.6215 0.4324 0.4510 0.4183 0.4237
Macro Precision T 0.6812 0.7985 0.6477 0.6648 0.5881 0.5895
Macro Recall 1 0.4328 0.5498 0.3756  0.3887 0.3747 0.3833
Fl-micro 1 0.5697 0.6788 0.5164 0.5292 0.6619 0.6661
Micro Recall 1 0.4659 0.5778 0.3783 0.3887 0.5368 0.5484
Hamming Loss |  0.0810 0.0684 0.0883 0.0863 0.0715 0.0717

Accuracy 1 0.9190 0.9316 0.9116 0.9137 0.9285 0.9283

Average Precision 1 0.6822 0.6864 0.6822 0.6848 0.7874 0.7879
Coverage | 4.0871 3.3483 8.5161 8.3545 6.0526 5.9573
One Error | 0.2433 0.1517 0.1093 0.1054 0.1094 0.1126

Ranking Loss | 0.1387 0.0982 0.1312 0.1325 0.0907 0.0898

Table 2. Performance evaluations of MLDA and Direct MLDA for IXMAS mask,
Emotion and Reference databases

IXMAS mask (10)  Emotion Reference

MLDA DMLDA (K-1) MLDA DMLDA (K+2) MLDA DMLDA (K+16)
Fl-macro 1 0.0505 0.0624 0.5794 0.6009 0.3221 0.3105
Macro Precision 1 0.1628 0.1841 0.6752 0.6519 0.3014 0.3303
Macro Recall 1 0.0335 0.0439 0.5334 0.5802 0.3644 0.3177
Fl-micro 1 0.0628 0.0794 0.6093 0.6248 0.5374 0.6100
Micro Recall 1 0.0333 0.0431 0.5509 0.5964 0.5543 0.5775
Hamming Loss |  0.0826 0.0827 0.2198 0.2230 0.1331 0.1026
Accuracy T 0.9174 0.9173 0.7802 0.7761 0.8669 0.8964
Average Precision 1 0.3518 0.3579 0.7695 0.7758 0.6808 0.7479
Coverage | 11.4778 11.3227 1.9360 1.9044 4.0580 3.8367
One Error | 0.7069 0.7009 0.3170 0.3256 0.3765 0.2485

Ranking Loss | 0.3164 0.3102 0.1948 0.1903 0.1410 0.1187
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4 Conclusions

In this paper we have proposed the Direct Multi-label Linear Discriminant Anal-
ysis method, as an extend of Multi-label Linear Discriminant Analysis. We re-
formulated the between-class scatter matrix in order to distinguish data that do
not have a specific label. Direct MLDA gives more than K — 1 projections and
search this way for the better reduced space that improves classification accu-
racy to the maximum. The theoretical advantages of our method are confirmed
in experimental evaluations on multi-label video analysis that show that Direct
MLDA performs better thanMLDA in terms of both label prediction and label
ranking.

Acknowledgment. The research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement number 316564 (IMPART). This publication reflects only
the authors views. The European Union is not liable for any use that may be
made of the information contained therein.

References

1. Zhang, M., Zhou, Z.: A Review on Multi-Label Learning Algorithms. IEEE Trans-
actions on Knowledge and Data Engineering (2013)

2. Yang, S., Kim, S.-K., Ro, Y.-M.: Semantic Home Photo Categorization. IEEE
Transactions on Circuits and Systems for Video Technology, 324-335 (2007)

3. Tang, J., Hua, X.-S., Wang, M., Gu, Z., Qi, G.-J., Wu, X.: Correlative Linear
Neighborhood Propagation for Video Annotation. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 409-416 (2008)

4. Borges, H.B., Nievola, J.C.: Multi-Label Hierarchical Classification using a Com-
petitive Neural Network for protein function prediction. In: The 2012 International
Joint Conference on Neural Networks (IJCNN), pp. 1-8 (2012)

5. Wang, H., Hu, J.: Multi-label image annotation via Maximum Consistency. In: 2010
17th IEEE International Conference on Image Processing (ICIP), pp. 2337-2340
(2010)

6. Huang, S., Jin, L.: A PLSA-Based Semantic Bag Generator with Application to
Natural Scene Classification under Multi-instance Multi-label Learning Frame-
work. In: Fifth International Conference on Image and Graphics, pp. 331-335
(2009)

7. Tsoumakas, G., Katakis, 1., Vlahavas, I.: Mining multi-label data-instance Multi-
label Learning Framework. In: Data Mining and Knowledge Discovery Handbook,
pp. 667-685 (2010)

8. Fiirnkranz, J., Hillermeier, E., Loza Mencia, E., Brinker, K.: Multilabel classifica-
tion via calibrated label ranking, pp. 133-153 (2008)

9. Zhang, M.-L. and Zhou, Z.-H.: A k-nearest neighbor based algorithm for multi-label
classification. In: 2005 IEEE International Conference on Granular Computing, pp.
718-721 (2005)

10. Crammer, K., Singer, Y., Jaz, K., Hofmann, T., Poggio, T., Shawe-taylor, J.: A
Family of Additive Online Algorithms for Category Ranking. Journal of Machine
Learning Research (2003)



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Direct Multi-label Linear Discriminant Analysis 423

Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Ad-
vances in Neural Information Processing Systems, pp. 681-687 (2001)
Arenas-garcia, J., Petersen, K.B., Hansen, L.K.: Sparse Kernel Orthonormalized
PLS for feature extraction in large data set. In: Advances in Neural Information
Processing Systems (2007)

Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Dani-
ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316,
pp. 126-139. Springer, Heidelberg (2010)

Zhang, Y., Zhou, Z.-H.: Multilabel dimensionality reduction via dependence max-
imization. ACM Transactions on Knowledge Discovery from Data (TKDD), 1-14
(2010)

Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 258-265 (2005)

Wang, H., Huang, H., Ding, C.: Image annotation using multi-label correlated
Green’s function. In: IEEE 12th International Conference on Computer Vision,
pp. 2029-2034 (2009)

Bingham, E., Mannila, H.: Random projection in dimensionality reduction: appli-
cations to image and text data. In: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 245-250
(2001)

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. Journal of the American Society for Information
Science, 391-407 (1990)

Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to func-
tional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering, 1338-1351 (2006)

Gkalelis, N., Kim, H., Hilton, A., Nikolaidis, N., Pitas, I.: The i3DPost multiview
and 3D human action/interaction database. In: 6th Conference on Visual Media
Production, pp. 159-168 (2009)

Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using mo-
tion history volumes. Computer Vision and Image Understanding, 249-257 (2006)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of
music into emotions. In: Proc. of ISMIR (2008)

Ueda, N., Saito, K.: Single-shot detection of multiple categories of text using para-
metric mixture models. In: Proc. of SIGKDD, pp. 626-631 (2002)

Tosifidis, A., Tefas, A., Pitas, I.: Activity-Based Person Identification Using Fuzzy
Representation and Discriminant Learning. IEEE Trans. on Information Forensics
and Security, 530-542 (2012)

Kyperountas, M., Tefas, A., Pitas, I.: Dynamic training using multistage clustering
for face recognition. Pattern Recognition, 894-905 (2008)

Gkalelis, N., Tefas, A., Pitas, I.: Combining fuzzy vector quantization with linear
discriminant analysis for continuous human movement recognition. IEEE Transac-
tions on Circuits and Systems for Video Technology, 1511-1521 (2008)
Kyperountas, M., Tefas, A., Pitas, I.: Salient feature and reliable classifier selection
for facial expression classification. Pattern Recognition, 972-986 (2010)



	Direct Multi-label Linear Discriminant Analysis
	1 Introduction
	2 Direct Multi-label Discriminant Analysis
	2.1 Multi-label Linear Discriminant Analysis
	2.2 Direct Multi-label Discriminant Analysis

	3 Experimental Results on Video Analysis
	4 Conclusions
	References




