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ABSTRACT samples to a low-dimensional subspace, where an appropri-

) ) ) ) . ately formed criterion is optimized.
We present a novel dimensionality reduction method which  £,0,qing on the underlying optimization criterion, a pop-
aims to identify a low dimensional projection subspace,a; cateqory of subspace learning algorithms are thoge tha
where samples form classes that are better discriminategye ot o enhance classes discrimination in the reduced di
and separated with maximum margin. The proposed methqgl o sional projection space. These algorithms aim to iffenti
brings certain advantages, both to data embedding and clagyis riminative subspace, in which the data samples frém di
sification. It improves classification performance, reduce o ont classes are far apart from each other. Linear Digcrim
the required training time of the SVM classifier, since it isnantAnaIysis (LDA) [1] and its variants, are such repreaent
trained over the projected low dimensional samples and alsg,e methods that extract discriminant information by fingli

dlata outliers andﬁthe pverallfdata sample;]s dlstrlbutlormlmsh projection directions that achieve intra-class compastaad
classes do not affect its performance. The proposed met ‘?H'ter-class separability.

has been applied for facial expression recognition in Cohn-
Kanade database verifying its superiority in this task,raga
other state-of-the-art dimensionality reduction techeig)

Margin maximizing embedding algorithms [2, 3, 4] in-
spired by the great success of Support Vector Machines
(SVMs) [5] also aim to enhance data discrimination in the low
Index Terms— Subspace learning, maximum margin dimensional space. In [3] the Maximum Margin Projection
projections, support vector machines, facial expressioag- (MMP) algorithm has been proposed, which is an unsuper-
nition vised embedding method that attempts to find different sub-
space directions that separate data points in differestensi
with maximum margin. To do so, MMP seeks for such a data
1. INTRODUCTION labelling, so that, if an SVM classifier is trained, the réisigl
. o separating hyperplanes can separate different data iduste
One of the most crucial problems that every facial image-analyth the maximum margin. He et. al in [2] also exploited the
ysis algorithm e_ncounters is the high dimensionality of themargin maximization concept proposing a semisupervised di
image data, which can range from several hundreds to thog,ensjonality reduction method for image retrieval thatsim
sands of extracted image features. Directly dealing withsu 14 giscover both geometrical and discriminant structurles o
high dimensional data is not only computational inefficient jhe gata manifold. This algorithm constructs a within-slas
but .allso yields 'several problems in subsequently performegh,q 3 petween-class graph by exploiting both class and neigh
statistical learning algorithms, due to the so-callearse of  4rhood information and finds a linear transformation matri
dimensionality” Thus, various techniques have been proypat maps image data to a subspace, where, at each local
posed for efficient data embedding (or dimensionality reducneighborhood, the margin between relevant and irrelevant
tion) that obtain a more manageable problem and aIIeviatﬁanages is maximized.
computational complexity. Moreover, reducing the dimen- | this paper we integrate optimal data embedding and
sionality of the original data can reveal the actual hidden u gy classification in a single framework to be called Maxi-
derlying data structure that can be efficiently describedgus ,um Margin Discriminant Projections (MMDP). MMDP al-
only a small number of degrees of freedom. Such a populgfqithm directly operates on the random features extracted
category of methods is the subspace image representation gkjng an orthogonal Gaussian random projection matrix and
gorithms which aim to discover the latent image features byjarives an optimal projection matrix such that the sepagati
projecting linearly or non-linearly the high-dimensiomut  514in between the projected samples of different classes i

The research leading to these results has received fundimgtfie Euro- maximized, by epr0|t|ng the decision hyperplanes obwine

pean Community's Seventh Framework Programme (FP7/2003)inder  110M _training a SVM classifier. The MMD_P approach t_)r_ing_s
grant agreement no 248434 (MOBISERYV). certain advantages, both to data embedding and classificati




Since it is combined with a classification method, MMDP simultaneous optimization of the separating hyperplame no
is appropriately tuned towards improving classificatiom pe mal vectorw and the projection matriR, performed by suc-
formance. Furthermore, the SVM classifier is trained ovecessively updating the one variable, while keeping therothe
the projected low dimensional data samples determined bigxed. Next we first discuss the derivation of the optimal sep-
MMDP, thus the required computational effort is signifidgnt arating hyperplane normal vecter,, in the projection sub-
reduced. Moreover, since the decision hyperplane idemtifiespace determined dg and subsequently, we demonstrate the
by SVM training is explicitly determined by the support vec- projection matrix update with respect to the fixed.

tors, data outliers and the overall data samples distdhiti-

side classes do not affect MMDP performance, in contrastt@ 0.1. Finding the optimalv, in the projection subspace de-
other discrimination enhancing subspace learning alyost  termined byR

such as LDA, which assumes a Gaussian data distribution for o ) ) )
optimal classes discrimination. The optimization with respect t@, is essentially the conven-

The rest of the paper is organized as follows. Section $onal binary SVM training problem performed in the projec-
presents the proposed linear dimensionality reduction-alg tion subspace determined By rather than in the input space.
rithm, while Section 3 discusses its initialization. Senti 10 Solve the constrained optimization problem in (1) with re
4 describes the conducted experiments for facial expressi¢Pect tow, we introduce positive Lagrange multipliersand

recognition and concluding remarks are drawn in Section 5.7 €ach associated with one of the constraints in (2) and (3),
respectively and formulate the Lagrangian function:

2. MAXIMUM MARGIN DISCRIMINANT 1 7 N
PROJECTIONS Liw.&R,af) = swiw+C) &
=1

Given a sett = {(x1,%1), -.., (Xn,yn)} Of N training data N
pairs, wherex; e{(Rm,i ): 1,(..., N ar)g them-dimensional - Zo‘i [3/1 (WTRXz‘ + b) -1+ 51}
input feature vectors angl € {—1, 1} is the class label asso- =1
ciated with each sample;, a binary SVM classifier attempts N
to find the separating hyperplane that separates trainiteg da - 2;@*&- (4)

points of the two classes with maximum margin, while mini-

mizes the classification error defined according to which sid The solution can be found from the saddle point of the La-
of the decision hyperplane training samples of each cldiss fagrangian function, which has to be maximized with respect
in. Considering that each training sampleXfs firstly pro- ~ to the dual variablegx and 3 and minimized with respect
jected to a low-dimensional subspace using a projection md0 the primal onesw, £ andb. According to the Karush-
trix R € R"™™™, wherer < m and performing the lin- Kuhn-Tucker (KKT) conditions the partial derivatives of

ear transformatiost; = Rx;, the binary SVM optimization £(w,&, R, a,3) with respect to the primal variables, £

problem is formulated as follows: andb vanish deriving the following equalities:
N IL(W,& R, a, B) -
wingv O 8 ® o =
IL(W, & R, a, al
subject to the constraints: ( éab B _y o > iy =0, (6)
=1
i (WwIRx; +b) > 1-¢ 2 R
vi (WRxi+b) > 16 2) LW ER @B L s @
& > 0, i=1,...,N, (3) 9

By substituting the terms from the above equalities intg (4)
we switch to the dual formulation, where the optimization

I{Jroblem in (1) is reformulated to the maximization of the fol
gwing Wolfe dual problem:

wherew € R" is ther-dimensional normal vector of the sep-

arating hyperplane, € R is its bias term¢ = [¢1, ..., &n]T

are the slack variables, each one associated with a traini

sample and” is the term that penalizes the training error. N N
The MMDP algorithm attempts to learn a projection ma- 1

trix R, such that the low-dimensional data sample projection mgxz R} Z aiayiy;x; RTRX;. (8)

is performed efficiently, thus enhancing the discriminatie- =1 bd

tween the two classes. To quantify the discrimination powesubject to the constraints:

of the projection matrixR, we formulate our MMDP algo- N

rithm ba_tsed on ge_ometnpal_ arguments. To do so, we employ Z Qi =0, >0, ¥ i=1,...,N. (9)

a combined iterative optimization framework, involvingeth =



Consequently, solving (8) fatx the optimal separating hy- Obtaining the projection matriR () that increases the sepa-
perplane normal vectox, in the reduced dimensional space rating margin between the two classes in the projection sub-
determined byR, is subsequently derived from (5). space, we subsequently orthonormalize its rows by perform-
ing a Gram-Schmidt procedure, to deriRé").

After deriving the new projection matriR(*), the previ-
ously identified separating hyperplane is no longer optimal
o ~_since it has been evaluated in the projection subspace- deter
At eqch optimization rqundwe segk to update the prOJecuon mined byR(*~1. Consequently, it is required to re-project
matrix R(t_l)v so that its new estimaf®(*) maximizes the _the training samples usirB.(Y) and retrain the SVM classi-
separating margin between the two classes. To do so, we firgt, 1o obtain the current optimal separating hyperplane and

2.0.2. Maximum margin projection matrix update for fixed
Wo

project the high dimensional training sampigsrom the in-

its normal vector. Thus, MMDP algorithm iteratively update

put space to a low dimensional subspace, using the prafectiqne projection matrix and evaluates the normal vector of the

matrix R(til) derived during the previous step, and subseyptimal separating hyperplare, in the projection subspace
quently, train the binary SVM classifier in order to obtaie th yetermined byR, until the algorithm converges. In order to

optimal Lagrange multipliera., specifying the normal vector - getermine algorithms convergence we track the partiavaeri

of the separating hyperplamét).

tive value in (13) to identify stationarity. The followingas

To formulate the optimization problem for the projection tionarity check step is performed, which examines whether
matrixR update, we exploit the dual form of the binary SVM the following termination condition is satisfied:

cost function defined in (8). However, since tebm” | «;
is constant with respect &, we can remove it from the cost
function. Moreover, in order to retain the geometrical eta¥

whereer is a predefined stopping tolerance.

IVOR®Y)|[r < er|[VORD)||r, (15)

In our con-

tion between samples in the projection subspace, we camstrajycted experiments, we considered that = 1073. The

the derived updated projection mati® to be orthogonal.

combined iterative optimization process of the MMDP algo-

Consequently, the constrained optimization problem fer thrithm is summarized in Algorithm 1.

projection matrixR update can be summarized as follows:

Algorithm 1 Maximum Margin Discriminant Projections Al-
gorithm Considering a Binary Classification Problem.

N
1
max OR) = 3 Z i o 0yiyiX: RTRx;, (10)

i.J 1
subject to the constraint:
RRT =1, ay 2

wherel is ar x r identity matrix.

In order to apply the constraiRR” = I we first solve 3

(10), without the orthogonality constraints on its rows abed

plying a steepest ascent optimization algorithm, whichg at
given iterationt, invokes the following update rule:
R® =RED 4\, VORID), (12) &

where )\; is the learning step parameter for theh itera-
tion evaluated using the methodology presented in [6] and
VO(R®* 1) is the partial derivative of the objective function
in (10) with respect t®R (*~ 1), evaluated as:

N

. Input: The sett = {(xi,v:),

i=1,...,N}of N
m-dimensional two class train data samples.

: Output: The optimal maximum margin projection ma-

trix R, and the optimal separating hyperplane normal
vectorw,,.

Initialize: ¢ = 1 andR(® e R"*™ as an orthogonal
Gaussian random projection matrix.

tainR. Thus, we solve (10) foR keepingw! fixed, by ap- 4 repeat

Project x; to a low dimensional subspace performing
the linear transformation:

%, =R Vx;, Vi=1,... N.

Train the binary SVM classifier in the projection sub-
space by solving the optimization problem in (8) sub-
ject to the constraints in (9) to obtain the optimal La-
grange multipliersx,, .

Obtain the normal vector of the optimal separating hy-
perplane as:

wil) = SV oy RO Dx,.
Determinelearning rate\;.

Evaluate V(/)(R(t_l)) = — Zf\il 0¢¢70y7;w(()t)xT.

(2

Update projection matrixR*—1) givenw’ as:
R® = Orthogonaliz¢éR(*~V
At sz\il ozLoyiw((f)xiT).
t=t+1,R,=R® andw, = w®).

until [[VOR®)||p < 1073||[VOR®)||p

VO(R(t_l)) = Z a¢7oozj7oyiij(t_1)xix?
i.j
N .
= Z aiyoyiwff}x?. (13) 10:
i=1
Thus,R( is derived as: 0
. N 12:
R(f) = R(t_l) + )\t Z Oéi7oyiw(gt)X? . (14)
=1



3. MMDP ALGORITHM INITIALIZATION database poses a facial expression, starting from theaheutr
emotional state and finishing at the expression apex. To form

To initialize MMDP, it is first required to train the binary our data collection we considered only the last video frame
SVM classifier and obtain the optim&t, in a low dimen- depicting each formed facial expression at its higheshinte
sional subspace determined by an initial projection matrixity. Face detection was performed on these images and the
R, used in order to perform dimensionality reduction andresulting facial regions of interest were manually alignth
form the basis of the projection subspace. To do so, we comespect to the eyes position, anisotropically scaled toealfix
structR(“) as an orthogonal Gaussian random projection masize of150 x 200 pixels and converted to grayscale. Thus, we
trix. To deriveR(?, the following procedure is applied. We used in total 407 images depicting 100 subjects, posing-7 dif
create an x m matrix G of i.i.d., zero-mean, unit variance ferent expressions. To measure the facial expressionmécog
Gaussian random variables and partition it intosthe » ma-  tion accuracy, we randomly partitioned the available sanpl
trix Q and them x (m —r) matrixP, thusG = [Q P]. Con- into 5-folds and a cross-validation has been performed. Fig-
sequently, we orthonormalize the columns@fand create ure 2 shows example images from the Cohn-Kanade dataset,
an orthonormal matriG ;. = [Q. P.]. To do so, we nor- depicting the 7 recognized facial expressions arrangelaein t
malize the first column oz and orthogonalize the remaining following order: anger, fear, disgust, happiness, sadiseiss
columns with respect to the first, via a Gram-Schmidt proceprise and the neutral emotional state.
dure. This procedure results in the Gaussian random projec-
tion matrixR(® = QT having orthonormal rows that can be
used for the initialization of the iterative optimizatiorame-
work.

4. EXPERIMENTAL RESULTS

Fig. 2. Sample images depicting facial expressions in the
To visualize the ability of MMDP algorithm to estimate use- Cohn-Kanade database.
ful subspaces that enhance data discrimination, we appked
proposed algorithm in a two class toy classification problem Table 1 summarizes the best average facial expression
using artificial data, aiming to learn a 2D projection spacerecognition rates achieved by each examined embedding
To generate our toy dataset we collected 500 300-dimerisionmethod, across different subspace dimensionalities ngryi
samples for each class, with the first class features drawn rafrom 3 to 500. The best recognition rate attained by MMDP
domly from a standard normal distributio¥f(0, 1) and the s 80.4% using150-dimensional discriminant representations
second class drawn from¥(0.2, 1) normal distribution and  of the initial 30,000-dimensional input samples. MMDP
used 100 of them for training, while the rest were used tamutperforms all other competing embedding algorithms by
compose the toy test set. Figure 1 shows the 2D projectiomore than3% compared against the second best performing
of the two classes data samples after different iteratidns anethod, which is PCA. The best average expression recog-
the MMDP algorithm. As can be observed, the proposed alnition rate attained by PCA, LDA, LPP and RP wé&re3%,
gorithm was able, after a few iterations, to perfectly sef@ar 74.2%, 76.6% and75.2%, respectively.
linearly the two classes, by continuously maximizing the-se
arating margin. ) .

In addition we compared the performance of the pro_Tabl_e 1. Best average expression recognition accuracy rates_
posed method for facial expression recognition, on the €ohr{%) in Cohn-Kanade database. In parentheses is shown the di-
Kanade database [7], with that of several state-of-theliart Mension that results in the best performance for each method
mensionality reduction techniques, such as Eigenface&YPC SVM PCA | LDA | LPP|] RP | MMDP
[8], Fisherfaces (LDA), Laplacianfaces (LPP) [9] and Ran- 73.4 773 [ 742 1766 | 752 804
domfaces (RP) resulting by projecting facial images using
random projections. For baseline comparison we also di- (30,000) | (325) | (6) (6) | (500) | (150)
rectly feed the initial high dimensional samples to a linear
SVM classifier. In our implementation we have combined
our optimization algorithm with LIBSVM [10], which pro-
vides an efficient implementation for solving several bynar 5. CONCLUSION
linear SVMs for multiclass classification problems. Simi-
larly, the discriminant low-dimensional facial repressiiins  We proposed a discrimination enhancing subspace learning
derived from the other examined algorithms were also fed toethod called MMDP that aims to identify a low dimensional
LIBSVM for classification. projection subspace where samples form classes that are sep

Each subject in each video sequence of the Cohn-Kanaggated with maximum margin. MMDP directly works with
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Fig. 1. 2D projection of the initial data at different iteratiorftlee MMDP algorithm. Circled data samples denote the idieoti
support vectors which reduce during MMDP algorithms cogeace. As a result, the SVM training process convergesrfaste
and into a sparser solution, since the number of identifippet vector decreases as classes discrimination is eatianc

random features obtained using an orthogonal random Gaus- ference on Machine Learning (ICML2005, pp. 1060—
sian projection matrix and exploits the separating hyargl 1067.

obtained from training a SVM classifier in the identified low
dimensional space. Experimental results showed that th
proposed method outperforms current state-of-the-art em-
bedding methods for facial expression recognition on the[6] Chih-Jen Lin, “Projected gradient methods for nonnega-
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6. REFERENCES [7] T. Kanade, J.F. Cohn, and Y. Tian, “Comprehensive
_ o database for facial expression analysis,” IHEE In-
[1] K. Fukunaga,Introduction to statistical pattern recog- ternational Conference on Automatic Face and Gesture
nition, Academic Press, second edition, 1990. RecognitionMarch 2000, pp. 46-53.
[2] Xiaofei He, Deng Cai, and Jiawei Han, “Learning a [8] M. Turk and A. Pentland, “Eigenfaces for recognition,”
maximum margin subspace for image retrievdEEEE Journal of cognitive neuroscienceol. 3, no. 1, pp. 71—
Transactions on Knowledge and Data Engineeriva. 86, 1991.

20, no. 2, pp. 189-201, February 2008. [9] X He and P. Niyogi, “Locality preserving projections,”

in Advances in Neural Information Processing Systems

[3] F. Wang, B. Zhao, and C. Zhang, “Unsupervised large o )
Vancouver, British Columbia, Canada, 2003, vol. 16.

margin discriminative projection,”IEEE Transactions
on Neural Networksvol. 22, no. 9, pp. 1446-1456, [10] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A
September 2011. library for support vector machinesCM Transactions

. . _ on Intelligent Systems and Technol .2,pp. 27:1-
[4] A. Zien and J.Q. Candela, “Large margin non-linear em- 27:27 2811 4 ou!. 2, pp

bedding,” inProceedings of the 22nd International Con-



