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ABSTRACT

Speech signals convey useful information for the recording devices
used to capture them. Here, acquisition device identification is stud-
ied using the sketches of spectral features (SSFs) as intrinsic fin-
gerprints. The SSFs are extracted from the speech signal by first
averaging its spectrogram along the time axis and then by mapping
the resulting mean spectrogram into a low-dimension space, such
that the “distance properties” of the high-dimensional mean spec-
trograms are preserved. Such a mapping results by taking the in-
ner product of the mean spectrogram with a vector of independent
identically distributed random variables drawn from a p-stable dis-
tribution. By applying a sparse-representation based classifier to
the SSFs, state-of-the-art identification accuracy exceeding 95% has
been measured on a set of 8 telephone handsets from Lincoln-Labs
Handset Database (LLHDB).

Index Terms— Digital speech forensics, sketches, spectral fea-
tures, sparse representation.

1. INTRODUCTION

Digital speech content can be imperceptibly altered by malicious,
even amateur, users employing a variety of low-cost audio editing
software. This creates a serious threat permeating a wide variety of
fields, such as intellectual property, intelligence gathering and foren-
sics, to name a few [1]. Theories and tools to combat this threat in
the field of digital speech forensics are still in their infancy [2].

First of all, one needs to extract forensic evidence about the
mechanism involved in the generation of the speech recording by
analyzing the speech signal [2]. That is, to identify the acquisition
device by assuming that the device along with its associated signal
processing chain leaves behind intrinsic traces in the speech signal.
Indeed, the various devices (e.g., telephone handsets, cell-phones)
do not have exactly the same frequency response due to the tol-
erance in the nominal values of the electronic components and the
different designs employed by the various manufacturers [3]. This
implies that the recorded speech can be considered as a signal whose
spectrum is the product of the genuine speech spectrum, driving the
acquisition device, and the frequency response of the latter. Conse-
quently, the recorded speech signal can be exploited in device iden-
tification, following a blind-passive approach, as opposed to active
embedding of watermarks or having access to input-output pairs [2].

Audio forensics are less developed [4] than image forensics [1].
Codec identification has attracted the interest of the forensics com-
munity. Studies performed for the identification of codecs, such
as MP3 [5], Windows Media Audio codec [6], Code Excited Lin-

ear Prediction codecs [7], or G.711, G.726, G.728, G.729, Inter-
net Low-Bit codec, Adaptive Multi-Rate NarrowBand, and Silk [8].
The authentication of speakers’ environment has been investigated
[9, 10, 11, 12]. The effectiveness of Hidden Markov Model-based
phone recognition for forensic voice comparison has been evalu-
ated in terms of both validity (accuracy) and reliability (precision)
in [13]. A few automatic acquisition device identification systems
have been developed. For instance, a method for the classification
of 4 microphones has been proposed in [10] that was further im-
proved thanks to a proper fusion strategy [11]. The speech signal
is parameterized by employing time domain features and the mel-
frequency cepstral coefficients (MFCCs). The identification of the
microphones is performed by the Naive Bayes classifier at a short-
time frame level. Accuracies in the order of 60-75% have been
reported. Rank level fusion was shown to increase classification
accuracy to 100% [11]. The identification of 8 landline telephone
handsets and 8 microphones is addressed in [2]. In particular, the
intrinsic characteristics of the device are captured by a template con-
structed by concatenating the mean vectors of a Gaussian mixture
trained on the speech recordings of each device. To this end, linear-
and mel-scaled cepstral coefficients were employed for speech sig-
nal representation. Classification accuracies higher than 90% have
been achieved, when a support vector machine (SVM) classifier was
employed. Recently, a robust system for the identification of cell-
phones has been proposed in [3]. In particular, when the MFCCs,
extracted from device speech recordings, are classified by an SVM,
14 different cell-phones are identified with an accuracy of 96.42%.

In this paper, the blind-passive method for landline telephone
handset identification introduced in [14] is elaborated further. This
method resorts on suitable feature extraction from speech recordings
and their sparse representation, enabling to trace the recording de-
vice. Here, the sketches of spectral features (SSFs) are proposed as
intrinsic fingerprints suitable for device identification. The SSFs are
extracted from the speech signal first by averaging its spectrogram
along the time axis and second by mapping the mean spectrogram
into a low-dimension space, such that the “distance properties” of
the high-dimensional mean spectrograms are preserved. Such a map-
ping can be obtained by taking the inner product of the mean spec-
trogram with a vector of independent identically distributed (i.i.d.)
random variables drawn from a p-stable distribution [15]. A spe-
cial case of the SSFs are the random spectral features used in [14].
The SSFs form an overcomplete dictionary of basis signals for de-
vices’ intrinsic traces. This dictionary is exploited then for sparse
representation-based classification (SRC) [16]. If sufficient training
speech recordings are available for each device, it is possible to ex-
press the SSFs extracted from a recording captured by an unknown
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(test) device as a compact linear combination of the dictionary atoms
for the device actually used during acquisition. This representation is
designed to be sparse, because it involves only a small fraction of the
dictionary atoms and can be computed efficiently via �1-norm opti-
mization. The classification is performed by assigning each vector
of test SSFs the device identity (ID) the dictionary atoms weighted
by non-zero coefficients are associated with.

The proposed method is tested for the identification of 8 tele-
phone handsets by conducting experiments on the Lincoln-Labs
Handset Database (LLHDB) [17], when a stratified 2-fold cross-
validation is applied. For comparison purposes, the mean 23-
dimensional MFCC vector of each speech recording is considered as
a baseline feature for device characterization. Performance compar-
isons are made against the linear SVM [18] and the nearest-neighbor
(NN) classifier, which employs the cosine similarity measure. The
experimental results demonstrate the effectiveness of the SSFs over
the MFCCs as device fingerprints, no matter which classifier is
employed. Meanwhile, the proposed device identification method
yields an accuracy of 95.02%, outperforming the state-of-the-art
method [2] on the LLHDB dataset.

The paper is organized as follows. In Section 2, the SSFs are in-
troduced and the calculation of the MFCCs is described. The sparse
representation-based device identification is detailed in Section 3.
The dataset and experimental results are presented in Section 4. Con-
clusions are drawn in Section 5.

2. ACQUISITION DEVICE FINGERPRINTS

The majority of features employed in speech and speaker recogni-
tion, spoken language identification, etc. are based on the spec-
trum of the speech signal. Assuming that the acquisition device is
a linear time-invariant system, its impact on the recorded speech is
modeled by the convolution of its impulse response and the original
speech. Thus, the identity of the acquisition device is embedded into
the recorded speech, since the spectrum of any recorded speech seg-
ment is the product of the spectrum of the original speech signal and
the device frequency response.

Let us first extract the spectrogram of each recorded speech sig-
nal by employing frames of duration 64 ms with a hop size of 32
ms and Discrete Fourier Transform of size 2048 samples. Next, the
logarithm of the spectrogram is calculated and is averaged along the
time axis, yielding a 2048-dimensional mean spectrogram.

Denote the data matrix by Z ∈ R
2048×n containing the mean

spectrograms of n recordings. The dimensionality of the mean spec-
trograms is reduced to d < 2048 by pre-multiplying Z with a pro-
jection matrix R ∈ R

d×2048 yielding X = R Z. The elements
of R, Ri,j , can be taken as i.i.d. random variables sampled from
a p-stable distribution [19]. A distribution D over R is called p-
stable if there exists p ≥ 0 such that for any n real numbers αi,
i = 1, 2, . . . , n and i.i.d. random variables ri drawn from D, the
random variable

∑
i αi ri has the same distribution as the variable

(
∑

i |αi|p)1/p r, where r is a random variable having distribution
D. That is, if we sample Ri,j from a p-stable distribution, for any
two mean spectrograms (say the first two column of Z) the differ-
ences Xi,1 − Xi,2 =

∑2048
j=1 Ri,j(Zj,1 − Zj,2), i = 1, 2, . . . , d,

are also i.i.d. samples of a p-stable distribution. This implies that
the projection can be used to recover an approximate value of the �p

norm of the original spectrograms computed in a space of reduced
dimensions. The most well-known stable distribution is the Gaus-
sian distribution of zero mean and unit standard deviation N (0, 1),
which is 2-stable. This distribution was used in [14]. However, the
class of stable distributions is much wider, including heavy-tailed

distributions as well [15]. For example, the Cauchy distribution
f(r) = 1

π
1

1+r2 is 1-stable. In general for p ∈ (0, 2], Ri,j can
be generated by [20]

Ri,j =
sin(pθ)

cos1/p θ

(
cos(θ(1 − p))

− ln u

) 1−p
p

(1)

where θ is uniform on [−π/2, π/2] and u is uniform on [0, 1]. More-
over, the projection matrix R is orthogonalized and the entries of
X ∈ R

d×n are further post-processed as follows. Each row of X is
normalized to the range [0, 1] by subtracting from each matrix ele-
ment the row minimum and then by dividing it with the difference
between the row maximum and the row minimum. The columns of
X are the SSFs that are used for acquisition device identification.

The MFCCs are considered as baseline features [2]. They en-
code the frequency content of the speech signal by parameterizing
the rough shape of spectral envelope. Following [2], the MFCC cal-
culation employs frames of duration 20 ms with a hop size of 10 ms,
and a 42-band filter bank. The correlation between the frequency
bands is reduced by applying the discrete cosine transform along the
log-energies of the bands. The sequence of 23-dimensional MFCCs
is averaged along the time axis yielding a 23-dimensional mean vec-
tor. The data matrix containing the MFCCs is postprocessed as de-
scribed previously for the SSFs.

3. ACQUISITION DEVICE IDENTIFICATION VIA SPARSE
REPRESENTATION

The problem of revealing the device identity of a vector of SSFs
given a number of labeled SSFs from N acquisition devices is ad-
dressed based on the SRC [16].

Let us denote by Ai = [ai,1|ai,2| . . . |ai,ni ] ∈ R
d×ni the dic-

tionary that contains ni SSFs stemming from the ith device as col-
umn vectors (i.e., dictionary atoms). Given a vector of test SSFs
y ∈ R

d that comes from the ith device, we can assume that y is
expressed as a linear combination of the atoms that are associated to
the ith device, i.e.,

y =

ni∑
j=1

ai,j ci,j = Ai ci (2)

where ci,j ∈ R are coefficients, which form the coefficient vector
ci = [ci,1, ci,2, . . . , ci,ni ]

T .
Next, let A = [A1|A2| . . . |AN ] ∈ R

d×n be an overcomplete
dictionary formed by concatenating n SSFs, which stem from N ac-
quisition devices1 Thus, y ∈ R

d in (2) is equivalently rewritten as
y = A c, where c = [0T | . . . |0T |cT

i |0T | . . . |0T ]T is the n × 1
augmented coefficient vector, whose elements are zero except those
associated with the ith device. Thus, the entries of c bear informa-
tion about the device the test vector of SSFs y ∈ R

d comes from.
Since the device ID of a test vector of SSFs is unknown, we

can predict it by seeking the sparsest solution to the linear system of
equations y = A c. Formally, given the overcomplete dictionary A
and the vector of test SSFs y ∈ R

d, the problem of sparse represen-
tation is to find the coefficient vector c, such that y = Ac and ‖c‖0

is minimized, i.e.,

c∗ = arg min
c

‖c‖0 subject to Ac = y (3)

where ‖.‖0 is the �0 quasi-norm returning the number of the non-
zero entries of a vector. Unfortunately, the solution of the problem

1Clearly, n =
∑N

i=1 ni.



(3) is NP-hard. An approximate solution to the problem (3) can be
obtained by replacing the �0 norm with the �1 norm:

c∗ = arg min
c

‖c‖1 subject to A c = y (4)

where ‖.‖1 denotes the �1 norm of a vector. In [21], it has been
proved that if the solution is sparse enough, then the solution of (3)
is equivalent to the solution of (4), which can be obtained by standard
linear programming methods in polynomial time.

A test vector of SSFs can be classified as follows. The coeffi-
cient vector c∗ is obtained by solving (4). Ideally, c∗ contains non-
zero entries in positions associated with the dictionary atoms (i.e.,
columns of A) stemming from a single device, so that we can easily
assign the vector of test SSFs y to that device. However, due to mod-
eling errors, there are small non-zero entries in c∗ that are associated
to multiple devices. To cope with this problem, each SSF is classi-
fied to the device class that minimizes the residual ‖y −A δi(c)‖2,
where δi(c) ∈ R

n is a new vector, whose nonzero entries are asso-
ciated to the ith device only [16].

4. EXPERIMENTAL EVALUATION

Experiments were conducted on the same subset of the Lincoln-Labs
Handset Database (LLHDB) [17] as in [2]. This subset consists of
speech recordings from 53 speakers (24 males and 29 females) ac-
quired by 8 landline telephone handsets. 4 of telephone handsets are
carbon-button (CB1-CB4) and the remaining 4 are electrect (EL1-
EL4). Following the experimental set-up used in [2], a stratified
2-fold cross-validation is employed.

Table 1. Best telephone handset identification accuracies achieved
by the SSFs and the MFCCs, when the SRC, the linear SVM, and
the NN are employed.

Features Feature
dimen-
sion

Classifier Accuracy (%)

SSFs (Cauchy) 800 SRC 94.72
SSFs (Cauchy) 800 SVM 94.66
SSFs (Cauchy) 775 NN 83.78

SSFs (Gaussian) 700 SRC 94.99
SSFs (Gaussian) 800 SVM 94.66
SSFs (Gaussian) 850 NN 85.08

MFCCs 23 SRC 89.79
MFCCs 23 SVM 87.35
MFCCs 23 NN 81.95

MFCCs- based Gaus-
sian supervector [2]

N/A SVM 93.20

The best identification accuracies are summarized in Table 1,
when the SSFs or the MFCCs are classified by the SRC [16], the
linear SVM [18], and the NN with the cosine similarity measure. By
inspecting Table 1, it is clear that the SSFs are able to identify the
acquisition device committing less errors than the MFFCs, no matter
which classifier is employed. Moreover, the SSFs achieve state-of-
the-art identification accuracy if they are fed to either the SVM or
the SRC classifier for both stable distributions considered. The latter
classifier achieves the highest identification accuracy (i.e., 94.99%)
on the LLHDB, when Gaussian random projections are used. The
SRC outperforms also the SVM, when the MFCCs are employed.

The performance of the SRC and the SVM in telephone handset
identification on the LLHDB as a function of feature dimension (i.e.,
d) for SSFs obtained by several values of p is depicted in Fig. 1. The
best accuracy (i.e., 95.08%) is obtained for the SRC with p = 1.5
and d = 850. Clearly, for d > 175 and p ≥ 1 the SRC outperforms
the best result reported in [2], demonstrating the robustness of the
proposed approach.

In order to check if the accuracy differences are statistically sig-
nificant, we apply the approximate analysis in [22]. Let us assume
that the accuracies �1 and �2 are binomially distributed random
variables. If �̂1, �̂2 denote the empirical accuracies, and � =
�̂1+�̂2

2
, the hypothesis H0 : �1 = �2 = � is tested at 95%

level of significance. The accuracy difference has variance β =

2�(1−�)
M

, where M is the number of test recordings (i.e., 1696).
For ζ = 1.65

√
β, if �̂1 − �̂2 ≥ ζ, we reject H0 with risk 5%

of being wrong. The aforementioned analysis yields that the perfor-
mance gain between the SRC or the SVM employing the SSFs and
that reported in [2] is statistically significant (ζ = 1.35%), while the
accuracy differences between the SRC and the SVM are not.

It is worth noting that by projecting the data onto an orthogonal
p-stable matrix, the dictionary A obeys the restricted isometry prop-
erty (RIP) for a certain, appropriate order (say S) [23]. When this
property holds, A approximately preserves the Euclidean length of
S-sparse SSFs, which in turn implies that S-sparse vectors cannot
be in the null space of A. The latter is needed since otherwise there
would be no hope of reconstructing these vectors.

5. CONCLUSIONS

The SSFs have been demonstrated to capture the intrinsic trace of
the acquisition device, while the sparse representation-based classi-
fication has been shown to be able to identify the acquisition device.
The experimental results validate the robustness of the SSFs over
the MFCCs for device characterization, yielding a state-of-the-art
performance in recognizing 8 telephone handsets from the LLHDB.
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