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ABSTRACT
A general Bayesian post-processing methodology for per-

formance improvement of object tracking in stereo video se-
quences is proposed in this paper. We utilize the results of
any single channel visual object tracker in a Bayesian frame-
work, in order to refine the tracking accuracy in both stereo
video channels. In this framework, a variational Bayesian al-
gorithm is employed, where prior knowledge about the object
displacement (movement) is incorporated via a prior distri-
bution. This displacement information is obtained in a pre-
processing step, where object displacement is estimated via
feature extraction and matching. In parallel, disparity infor-
mation is extracted and utilized in the same framework. The
improvements introduced by the proposed methodology in
terms of tracking accuracy are quantified through experimen-
tal analysis.

Index Terms— Stereo Tracking, Variational Inference,
Student’s-t

1. INTRODUCTION

Efficient visual object tracking is very useful in semantic
video analysis, human-computer interaction, surveillance,
etc. [1]. In this paper, we use the term ”object” to refer to
any entity to be tracked, including faces or other human parts.
Face tracking in particular, in conjunction with face detection,
is required as a preprocessing step for a number of human-
centered video analysis tasks such as face clustering and
recognition or facial expression recognition. Tracking can
be formulated in a stochastic Bayesian framework, see [2].
In this work, a post-processing methodology is introduced,
which is formulated on a Bayesian framework, with the aim
to accurately localize an object in stereo videos, by combin-
ing the tracking results of a single channel tracking algorithm,
applied independently on the two channels of a stereo video.
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Combination of multiple tracking information has also been
proposed in [3], where a Monte Carlo stochastic sampling al-
gorithm is employed. A similar approach is presented in [4],
where multiple trackers are combined, by exploiting only the
probability density function of the new target position of each
tracker. The major novelty of our proposed framework is that
the tracking information, which the proposed post-processing
algorithm combines, comes from the left and right stereo
video channels. The framework also utilizes object displace-
ment information over time, obtained through SIFT feature
matching [5], as well as disparity information between object
appearances in left and right video frames. An overview of
the proposed methodology is illustrated in Figure 1.

Object displacement and disparity information is obtained
prior to post-processing, by using the initial tracking results.
Displacement and disparity are manifested in the proposed
methodology as probability distribution parameters. To this
end, two Student’s-t distributions are used. The reasoning
for adopting the Students’-t distribution is that it is flexible
enough to model the temporally varying statistical properties
of the data [6], [7].

Based on these two models, a variational Bayesian ap-
proximate inference algorithm [6] is employed, in order to
bypass the intractability problem that appears when exact in-
ference is attempted. The ultimate goal is to obtain more ac-
curate estimates of the ideal object ROI coordinates in both
channels.

The rest of the paper is organized as follows. The obser-
vation and prior models are described in Subsections 2.1 and
2.2 respectively, whereas the variational Bayesian inference
algorithm is derived in Subsection 2.3. Experimental evalu-
ation of the proposed post-processing framework is provided
in Section 3. Finally, Section 4 concludes the paper.

2. METHOD DESCRIPTION

2.1. Observation Model

With the proposed methodology we aim to estimate the ideal
(unknown) positions of the object ROIs in each video frame
and channel. We model as random variables (observation
model) only the ideal object ROIs in the left video channel,



Fig. 1. Overall diagram of the proposed methodology.

which are inferred by the Bayesian post-processing algorithm.
On the other hand, the right video channel ROIs are estimated
after the Bayesian inference process.

LetN be the total number of frames for each channel (left
and right). A ROI in the i-th left channel frame, is assumed
to be a rectangle, defined by the upper-left and lower-right
vertex coordinates [x1(i), x2(i)]T and [x3(i), x4(i)]T , re-
spectively. This definition holds for every other type of
ROI, mentioned in what follows. We denote by x(i) =
[x1(i), x2(i), x3(i), x4(i)]T the i-th ROI ideal coordinates
and by x = [x(1)T ,x(2)T , . . . ,x(N)T ]T the vector contain-
ing the coordinates of all ideal object ROIs over the entire
video. The right channel coordinates xR(i) are given by
xR(i) = x(i) + δ(i), where xR(i) and the disparity vector:

δ(i) = [δ1(i), δ2(i), δ1(i), δ2(i)], (1)

are four element vectors. All coordinates are assumed to be
real numbers for optimization convenience, as seen in Sub-
section 2.3. Note that δ(i) are estimated in a pre-processing
step.

An object is tracked by initializing a single-view object
tracker on the first frame of the left and right video chan-
nels and applying it in both channels, independently. We
denote by zL(i), zR(i) (Figure 1) the extracted ROI coordi-
nates obtained by this procedure in the left and right video
channel, respectively. These coordinates are assumed noisy
observations of x(i). However, in the proposed model, we
use z1(i) = zL(i) , z2(i) = zR(i) − δ(i), which are direct
and indirect observations of x(i), respectively, where

zk(i) = [zk,1(i), zk,2(i), zk,3(i), zk,4(i)]T , (2)

for k = 1, 2, i = 1, . . . , N . We also denote by

z = [z1(1), . . . , z1(N), z2(1), . . . , z2(N)]T ,

the vector of all extracted ROI coordinates.
The observed ROI generation procedure mentioned above

is modelled by assuming that the extracted ROIs are noisy
observations of the ideal ROIs x. In more detail, we assume

that p(z|h) is given by:

p(z|h) ∝
∏
i,k

exp
(
−λbdk(i)bk(i)

2
‖zk(i)− x(i)‖22

)
, (3)

where h = {x,b,d,u} are the model hidden variables. d =
{dk(i) : ∀i, k} are binary random variables, that will be ex-
plained later in this Subsection. Moreover, u are random vari-
ables introduced and explained in Subsection 2.2 and b de-
notes the set of all inverse variances bk(i) of zk(i), appearing
in (3):

b = {bk(i) : ∀i,∀k}.

We impose a Gamma hyper-prior distribution [6] on bk(i):

p(bk(i)) ∝ bk(i)νb/2−1 exp(−νbbk(i)/2),∀k, i, (4)

where νb > 0. It should be noted that if we integrate out the b
variables from p(zk(i), b(i)|x(i),d(i))p(bk(i)), based on (3)
and (4), we obtain a Student’s-t distribution [6].

The key feature of this model is the flexibility of each
bk(i) to vary with i and k. Thus, this model is used with
the purpose to moderate the influence of ROIs coming from
highly inaccurate tracking results (such as object localization
failures due to occlusions or fast movement). Indeed, a very
small value of bk(i) moderates the influence of zk(i) ROI on
the estimate x̂(i), since its variance is very large.

Binary variables dk(i) in (3) take values dk(i) = 0 or 1,
with

∑2
k=1 dk(i) = 1. dk(i) = 1 indicates that the ROI z1(i),

and not z2(i), is actually the observation of the ideal ROI
x(i). For d, we assume a multinomial prior, with parameters
πk = 1

2 , k = 1, 2.

2.2. Prior model

For x, we adopt a Student’s-t distribution. Mathematically,
this means, first, that the conditional prior distribution that
generates x is a Gaussian distribution, given by:

p(x|u) ∝
N∏
i=2

exp(−λx

2
u(i)‖x(i)−x(i−1)−o(i)‖22), (5)

where o(i), i = 2, . . . , N , play the role of the mean (expected
value) of the temporal object displacement between two con-
secutive ROIs. These are computed after the initial single-
channel tracking step and before the Bayesian inference, us-
ing SIFT feature extraction and matching [5], as presented
in Figure 1. Variables u = [u(1), . . . , u(N)]T are generated
independently through a Gamma distribution:

p(u(i)) = Gamma(u(i); νx/2, νx/2), i = 2, . . . , N, (6)

except u(1), which is assumed to be zero. Note that if we in-
tegrate out u from the joint probability p(x,u), a multivariate
Student’s-t distribution [6] is obtained.



In (5), every displacement o(i) is used in the model as the
mean of a Gaussian distribution. Specifically, it is assumed
to be the expected value of the difference x(i) − x(i − 1).
We first define o(i) = [o1(i), o2(i), o1(i), o2(i)]T as a 4 × 1
vector. The values of its elements are (ideally) the differences:

o(i) = x(i)− x(i− 1), i = 2, . . . , N. (7)

o(i) consists, in essence, of two variables. We could have
used four variables, in order to make the model more accurate,
i.e. to model alterations of x(i− 1) to x(i) in every one of its
four elements, but we avoided that for the sake of simplicity.
However, this type of modeling does not prevent the estimate
of x(i), which is influenced by zL, zR, δ and not only o, to
have all four variables varying over time (i.e., the produced
ROIs are of varying size and aspect ratio).

2.3. Variational Bayesian Inference

We employ the variational Bayesian methodology, in order to
obtain an approximate posterior for the hidden variables h, in
a tractable manner [6]. In this way, we avoid the exact infer-
ence intractability problem, by using, for example, the expec-
tation maximization (EM) algorithm. Following this method-
ology, we utilize the always positive Kullback-Leibler (KL)
divergence between q(h) and p(h|z) [6], in order to define
the upper bound L of the log-likelihood:

L (q(h), θ) = log p(z; θ)−KL (q||p) ≥ log p(z; θ) (8)

q, which plays the role of the inferred posterior, and θ are
estimated by iteratively minimizing the bound with respect to
q and θ. We adopt the mean-field approximation, which is a
common practice in the variational framework. Specifically,
x , u, d and b are assumed independent in the inferred poste-
rior.

In what follows, t is the iteration number. Also, the no-
tation 〈.〉q(.) is used to denote the expectation with respect to
the q distribution. Moreover, in what follows, we denote by
[A](i,i) the i-th diagonal element of a matrix A.

Next, we give the update included in each iteration of the
variational Bayesian algorithm. xc, c = 1, 2, 3, 4, are N ×
1 vectors that are subsets of x and contain respectively the
coordinates x1(i), x2(i), x3(i) and x4(i), ∀i, as defined in
Subsection 2.1. The update of each of their posteriors is given
by:

q(t)(xc) = N
(
µ(t)
c ,C(t)

x

)
, c = 1, 2, 3, 4, (9)

µ(t)
c = C(t)

x yc,
(
C(t)

x

)−1

= B(t) + λ(t−1)
x QTU(t)Q, (10)

and B(t) and U(t) are diagonal matrices whose elements are:

[B(t)](i,i) = λ
(t−1)
b

2∑
k=1

d̂k(i)b̂k(i), [U(t)](i,i) = û(i), (11)

where d̂k(i) ≡ 〈dk(i)〉q(d). û(i), b̂k(i) will be defined next.
Moreover, yc, c = 1, 2, 3, 4 are N ×1 vectors with elements:

yc(i) = λb

2∑
k=1

d̂k(i)b̂k(i)zk,c(i) + λx[QTU(t)oc](i), (12)

where, [v](i) denotes the i-th element of a vector v. Also,
oc is a vector containing all oc(i), c = 1, 2, 3, 4, for i =
1, . . . , N . Finally, Q is the N × N first order difference op-
erator. The posteriors for u(i) and bk(i) are:

q(t)(u(i)) = Gamma (u(i);αu(i), βu(i)) , (13)

q(t) (bk(i)) = Gamma (bk(i);αb(i), βb(i)) , ∀k, i, (14)

where αu = νx/2 + 1/2 and αb(i) = νb/2 + d̂k(i)/2,

βu = 0.5(λ(t)
x ‖µ(t)(i)− µ(t)(i− 1)− o(i)‖22 + νx),

βb(i) = 0.5νb + 0.5d̂k(i)λ
(t−1)
b ‖zk(i)− µ(t)(i)‖22,

µ(t)(i) = [µ(t)
1 (i), µ(t)

2 (i), µ(t)
3 (i), µ(t)

4 (i)], ∀k, i.

Thus, using the mean of a Gamma distribution formula [6]:

û(i) ≡ 〈u(i)〉q(t)(u(i)) =
αu(i)
βu(i)

, ∀k, i. (15)

The update for b̂k(i) is similar with the above. We also set:

d̂k(i) = πk = 0.5, ∀k, i. (16)

The updates for λx and λb are found by maximizing L.
At the convergence of the above iterative scheme, i.e., af-

ter a large number of iterations t, we obtain the estimates of
the ideal ROI coordinates x̂(i) = µ(t)(i),∀i.

3. EXPERIMENTAL PERFORMANCE ANALYSIS

The proposed Bayesian post-processing tracking algorithm
was evaluated on two stereo sequences, by performing three
stereo tracking experiments. The single channel (SC) tracker
[8] was used to track objects (one face in each video and a
hand) independently in the left and right channel of the stereo
sequences. The tracking algorithm was initialized by a user
selected ROI in the first video frames of the left/right chan-
nels and no automatic object detection was performed. Using
the tracking results obtained by the SC tracker, we employ
the SIFT feature extraction and matching procedure, so as to
estimate the ROI coordinate displacements o and disparities
δ.

The output of the post-processing methodology includes
the estimates of the left channel ROI coordinates x̂. The right
channel ROI coordinates are obtained by:

x̂R(i) = x̂ + δ(i), i = 1, . . . , N. (17)



In what follows, the notation SBP (Stereo Bayesian Post-
processing) is used to denote the proposed post-processing
algorithm that provides the estimates x̂R and x̂ .

In order to measure the tracking accuracy, the Average
Tracking Accuracy (ATA) [9] metric, denoted by â was used:

â =
1
N

N∑
i=1

|Di

⋂
Gi|

|Di

⋃
Gi|

, (18)

where Di are the estimated ROI regions, while Gi are the
ideal (ground truth) ROI regions obtained through manual
video annotation, for i = 1, . . . , N . Di corresponds to the
area determined by the estimated ROI coordinates x̂(i) and
x̂R(i) for the left and right channel, respectively. |D| denotes
the pixel number of a ROI D.

The accuracy of tracking results in terms of the ATA met-
ric is presented in Table 1 for the SC and SBP algorithms. The
results demonstrate that the SBP algorithm provides higher
tracking accuracy than SC.

In addition to the refinement of tracking results, in this
work, we extract coarse disparity values δ̂(i) between the two
object ROIs in the left and right video frames, where again
a SIFT matching procedure is employed. The proposed ap-
proach avoids the time consuming application of dense dis-
parity estimation algorithms over the entire video frames. We
estimate the average disparity γ̂(i) in an object ROI, by using
the median of the the dense disparity values obtained through
the application of the method in [10] within an object ROI,
and we use them as reference disparities in the comparison
with the proposed coarse disparity estimation method. In the
Table 1, the mean and standard deviation (std) of the differ-
ences δ̂(i) − γ̂(i) are provided. We can see that estimated
disparities δ̂ are very close to the ”ground truth” disparities
γ̂ in terms of the mean and standard deviation of their differ-
ences.

Table 1. Tracking performance (ATA) of SC and SBP.
Video name N SC SBP δ̂(i)− γ̂(i)

mean std

Badminton, left 499 0.560 0.562 -2.11 1.62
Badminton, right 499 0.522 0.525
Poker (hand), left 499 0.461 0.513 0.52 1.01

Poker (hand), right 499 0.481 0.538
Poker (head), left 599 0.714 0.726 1.06 0.79

Poker (head), right 599 0.701 0.747

4. CONCLUSIONS

An object tracking Bayesian post-processing methodology
for stereoscopic sequences was presented in this paper. The
methodology refines the outputs of standard tracking algo-
rithms, by exploiting, the left and right channel tracking

results. Moreover, object displacement over time, as well as
disparity information, were exploited successfully to this end.
The refined tracking results are significantly better than those
provided by the initial, single-channel tracking algorithm. In
the future, we plan to improve the stochastic model.
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