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Abstract—Clustering-based Discriminant Analysis (CDA) is
a well-known technique for supervised feature extraction and
dimensionality reduction. CDA determines an optimal discrim-
inant subspace for linear data projection based on the assump-
tions of normal subclass distributions and subclass represen-
tation by using the mean subclass vector. However, in several
cases, there might be other subclass representative vectors that
could be more discriminative, compared to the mean subclass
vectors. In this paper we propose an optimization scheme
aiming at determining the optimal subclass representation for
CDA-based data projection. The proposed optimization scheme
has been evaluated on standard classification problems, as
well as on two publicly available human action recognition
databases providing enhanced class discrimination, compared
to the standard CDA approach.
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I. INTRODUCTION

Clustering-based Discriminant Analysis (CDA) is a well
known technique for supervised feature extraction and di-
mensionality reduction. Taking into account the subclass
information, it determines a reduced dimensionality feature
space, where samples belonging to different classes should
be as far from another, while they should be as close as
possible from the corresponding subclass center. It can be
considered as a generalization of Linear Discriminant Anal-
ysis (LDA) since, by allowing multiple subclasses within
each class, class multimodality is appropriately addressed.
The adopted criterion is the ratio of the within-subclass
scatter to the between-subclass scatter in the reduced di-
mensionality space. By minimizing this criterion, maximal
class discrimination is achieved. CDA optimality is based
on the assumptions that:
• all subclasses follow normal distributions having the

same covariance structure and
• each subclass is represented by the corresponding sub-

class vector.
Although relying on rather strong assumptions that do not
hold in many classification problems, it has been used in
many applications, such as facial expression [1] and human
action [2] recognition.

Taking into account that CDA optimization process en-
codes relationships between the class data by employing the
corresponding subclass scatter matrices and by observing
that such scatter matrices are functions of the corresponding
subclass representative vectors, one may think that there

could be several subclass representative vectors, other than
the subclass mean, that could provide different scatter ma-
trices enhancing class discrimination in the resulted reduced
dimensionality space. In this paper, we propose an iterative
optimization scheme aiming at determining such subclass
representative vectors for CDA-based data projection.

The rest of the paper is structured as follows. In Section
II, we briefly describe standard CDA algorithm. The pro-
posed iterative optimization scheme aiming at determining
the optimal subclass representative vectors is described in
Section III. An experimental study on standard classification
problems and publicly available action recognition datasests
is provided in Section IV. Finally, conclusions are drawn in
Section V.

II. STANDARD CDA

Given a set of D-dimensional data belonging to C classes
xijk ∈ RD, i = 1, . . . , C, j = 1, . . . , ci, k = 1, . . . , Nij ,
where it is assumed that class i is formed by ci subclasses,
each containing Nij samples., and their class labels lijk = i,
standard CDA determines a projection matrix W ∈ RD×d,
such that yijk = WTxijk is the image of xijk in a d-
dimensional feature space of increased class discriminative
ability. The optimal projection matrix W∗ is obtained by
minimizing the ratio of the within-subclass scatter matrix Sw

to the between-subclass scatter matrix Sb in the projection
space. Sw, Sb are determined by:

Sw =

C∑
i=1

ci∑
j=1

Nij∑
k=1

1

Nij
(yijk −mij)(yijk −mij)

T , (1)

Sb =

C∑
i=1

∑
l 6=i

ci∑
j=1

cl∑
h=1

1

C
(mij −mlh)(mij −mlh)T , (2)

where mij = 1
Nij

∑Nij

k=1 yijk is the mean vector of j-th
subclass belonging to class i in the reduced dimensionality
space Rd. Since yijk are not a-priori known, it is convenient
to express Sw, Sb by using xijk. It can be shown that:

Sw = WT S̄wW, (3)

and

Sb = WT S̄bW. (4)



S̄w, S̄b are given by:

S̄w =

C∑
i=1

ci∑
j=1

Nij∑
k=1

1

Nij
(xijk − µij)(xijk − µij)

T , (5)

S̄b =

C∑
i=1

∑
l 6=i

ci∑
j=1

cl∑
h=1

1

C
(µij − µlh)(µij − µlh)T . (6)

where µij = 1
Nij

∑Nij

k=1 xijk is the mean vector of j-th
subclass belonging to class i in the input space RD.

After obtaining S̄w, S̄b, W∗ is calculated by solving the
trace ratio optimization problem [3]:

W∗ = argmin
WTW=I

J (W), (7)

J (W) =
Tr(WT S̄wW)

Tr(WT S̄bW)
, (8)

where Tr(A) denotes the trace of matrix A, while the
constraint WTW = I, I ∈ Rd×d being the identity matrix,
is conventionally added to obtain a set of orthogonal and
normalized projection vectors.

Since the trace ratio problem does not have a direct
closed-form globally optimal solution [3], it is conven-
tionally approximated by solving the ratio trace problem
J = Tr[

(
WT S̄bW

)−1 (
WT S̄wW

)
], which is equivalent

to the optimization problem S̄wv = λS̄bv, λ 6= 0 and
can be solved by applying eigenanalysis to the matrix
S̄−1w S̄b in the case where S̄w is invertible, or to the matrix
S̄−1b S̄w in the case where S̄b is invertible. W∗ is formed by
the eigenvectors corresponding to the non-zero eigenvalues.
That is, the dimensionality of the resulted subspace is up
to d =

∑C
i=1 ci, since one may choose to keep fewer

eigenvectors in order to form W∗.

III. PROPOSED OPTIMIZATION SCHEME

As has been described in the previous Section, in CDA,
class discrimination in the resulted low-dimensional space
is measured by using the trace ratio value (8). By observing
that S̄w, S̄b are functions of µij , as detailed in (5) and (6),
respectively, we argue that there might be other subclass
representative vectors that could increase class discrimina-
tion. Such subclass representative vectors can be obtained by
minimizing CDA optimization criterion with respect to both
the data projection matrix W and the subclass representative
vectors µ̃ij . That is, we propose to minimize the following
criterion:

J̃ (W, µ̃ij) =
Tr(WT S̃w(µ̃ij)W)

Tr(WT S̃b(µ̃ij)W)
, (9)

where the adopted subclass scatter matrices S̃w, S̃b are
determined by:

S̃w =

C∑
i=1

ci∑
j=1

Nij∑
k=1

(xijk − µ̃ij)(xijk − µ̃ij)
T , (10)

S̃b =

C∑
i=1

∑
l 6=i

ci∑
j=1

cl∑
h=1

(µ̃ij − µ̃lh)(µ̃ij − µ̃lh)T . (11)

Since a simultaneous minimization of J̃ with respect to
both W and µ̃ij is not tractable, we propose an iterative
optimization scheme consisting of two processing steps.

Let us denote by µ̃ij,t the subclass representative vectors
determined for the t-th iteration of the proposed optimization
scheme. Here we have introduced the index t denoting
the iteration step of the proposed optimization scheme.
µ̃ij,t are employed in order to determine the corresponding
scatter matrices S̃w(µ̃ij,t), S̃b(µ̃ij,t) by using (10), (11),
respectively. S̃w(µ̃ij,t), S̃b(µ̃ij,t) are, in turn, employed in
order to determine the optimal data projection matrix W∗

t

by solving the ratio trace problem.
After determining the optimal data projection matrix W∗

t ,
µ̃ij,t are updated by following the direction of the gradient
of (9), i.e.:

µ̃ij,t+1 = µ̃ij,t − β
∂J̃
∂µ̃ij,t

. (12)

The gradient ∂J̃
∂µ̃ij,t

is given by:

∂J̃
∂µ̃ij,t

= λ1W
∗
t W

∗T
t

 2

Nij

Nij∑
k=1

(
µ̃ij,t − xijk

)
− λ2

W∗
t W

∗T
t

 2

C

∑
l 6=i

cl∑
h=1

(
µ̃ij,t − µ̃lh,t

) ,
where:

λ1 =
1

trace(W∗T
t S̃b(µ̃ij,t)W

∗
t )
, (13)

λ2 =
trace(W∗T

t S̃w(µ̃ij,t)W
∗
t )

trace(W∗T
t S̃b(µ̃ij,t)W

∗
t )2

. (14)

β in (12) is an update rate parameter. In our experiments
the value of β has been dynamically determined by using a
line search strategy. That is, in each iteration of the proposed
optimization scheme, the trace ratio criterion (9) has been
evaluated by using an update rate parameter value equal to
β0 = 0.1. In the case where J̃ (t+1) < J̃ (t) the trace ratio
criterion has been evaluated by using an update rate param-
eter value βn = 2βn−1. This process has been followed
until J̃ (t+ 1) > J̃ (t) and the update rate parameter value
providing the highest J̃ decrease has been employed for
subclass representative vectors adaptation. In the case where,
by using an update rate parameter value equal to β0 = 0.1,
J̃ (t+1) > J̃ (t), the trace ratio criterion has been evaluated
by using an update rate parameter value βn = βn−1/2. This
process has been followed until J̃ (t + 1) < J̃ (t) and the
update rate parameter value providing J̃ decrease has been
employed for subclass representative vectors adaptation.



The above described procedure is applied until
J̃ (t)−J̃ (t+1)

J̃ (t)
< ε, where ε is a small positive value.

In our experiments we have used a value ε = 10−4.

IV. EXPERIMENTAL RESULTS

In this Section, we present experiments conducted in
order to evaluate the proposed optimization scheme. Since
CDA is usually employed for feature selection and clas-
sification, we evaluated the performance of the proposed
Representative Class Vector CDA (RCV-CDA) algorithm
on standard classification problems. Furthermore, we have
applied the proposed RCV-CDA algorithm on two publicly
available human action recognition data sets. Details on
the data sets used in our experiments are provided in the
following subsections. In all the experiments, we compare
the performance of the proposed RCV-CDA algorithm with
that of standard CDA approach. In both cases, after data
projection in the reduced dimensionality discriminant space,
classification is performed by applying a modification of the
nearest subclass centroid classification scheme. That is, a test
sample xt ∈ RD is mapped to the discriminant subspace
by applying yt = W∗Txt and is assigned to the class
label of the nearest subclass representative vector using the
Euclidean distance, i.e.:

lt = argmin
i
‖yt − m̃ij‖2, i = 1, . . . , C, j = 1, . . . , ci,

(15)
where m̃ij = W∗T µ̃ij is the image of the subclass repre-
sentative vector µ̃ij in the reduced dimensionality space.
For both the competing algorithms, we have conducted
multiple experiments using different numbers of subclasses
ci = 1, 2, 3, 4 and we report the experiment provided the
best performance in each data set.

A. Experiments on Standard Classification Problems

We conducted experiments on publicly available classifi-
cation data sets coming from the machine learning repository
of University of California Irvine (UCI) [4]. Information
concerning the data sets used in our experiments can be
found in Table I.

Table I
UCI DATA SETS USED IN OUR EXPERIMENTS

Data set # classes # dimensions # samples
Australian 2 14 690
Heart 2 13 270
Hill 2 100 1212
Indians 2 8 768
Ionosphere 2 34 351
Iris 3 4 150
Libras 15 90 360
Optdigits 10 64 5620
Skin 2 3 245057
Tic Tac Toe 2 9 958
Vertebral2c 2 6 310
Wine 3 13 178

Since there is not a standard training-testing split in these
data sets, we have performed the 5-fold cross validation
procedure for the two competing classification schemes by
using the same partitioning. That is, in one experiment, each
data set has been randomly split in five sets. The algorithms
have been trained by using four sets and evaluated on
the fifth set. This process has been performed five times
(folds), one for each evaluation set, in order to complete
an experiment. The mean classification rate over all folds
has been used in order to measure the performance of each
algorithm in one experiment. Ten experiments have been
performed in total and the mean classification rate over
all experiments, as well as the standard deviation of the
observed results, have been calculated in order to measure
the performance of each algorithm in each data set. The
results obtained for these experiments are illustrated in Table
II.

Table II
CLASSIFICATION RESULTS ON UCI DATA SETS

Data set CDA RCV-CDA
Australian 74,86% (3,49%) 75,7% (3,46%)
Heart 53,67% (2,34%) 63,04% (3,83%)
Hill 57,18% (1,84%) 58,34% (2,47%)
Indians 56,26% (2,17%) 57,55% (1,41%)
Ionosphere 68,58% (4,98%) 72,65% (2,83%)
Iris 96,8% (0,69%) 96,93% (0,64%)
Libras 75,19% (1,39%) 75,22% (1,53%)
Optdigits 95,7% (0,14%) 95,74% (0,25%)
Skin 39,34% (3,32%) 41,52% (2,85%)
Tic Tac Toe 51,05% (1,84%) 52,41% (1,22%)
Vertebral2c 66,71% (3,3%) 69,1% (3,68%)
Wine 95,28% (0,66%) 95,67% (0,53%)

As can be seen in Table I, the classification scheme
employing the proposed RCV-CDA algorithm outperforms
the one employing the standard CDA algorithm in all cases,
providing 1 − 9% improvement on the performance of the
standard CDA algorithm.

B. Experiments on Human Action Recognition

We have conducted experiments on two publicly avail-
able action recognition data sets, namely i3DPost and
Hollywood2. Information concerning each data set is pro-
vided in the following.

1) The i3DPost data set [5]: consists of 64 sequences
depicting eight persons performing eight actions. Eight cam-
eras having a wide 45o viewing angle difference to provide
360o coverage of the scene were placed on a ring of 8m
diameter at a height of 2m above the studio floor. The studio
was covered by blue background. The actions appearing
in the database are: ’walk’, ’run’, ’jump in place’, ’jump
forward’, ’bend’, ’fall’, ’sit on a chair’, and ’wave one hand’.
Example video frames depicting a person in the database
walking are illustrated in Figure 1. In our experiments, we
have adopted the dyneme-based video representation [7] and
applied the Leave-One-Person-Out cross-validation scheme.



Figure 1. Example video frames depicting a person walking from all the
eight cameras.

That is, the algorithms have been trained by using the videos
depicting seven person in the database and tested on the
videos depicting the remaining one. This process has been
repeated eight times (folds), one for each test person. The
mean action classification rate over all folds has been used
in order to measure the performance of each competing
algorithm.

2) The Hollywood2 data set [6]: consists of 1707 videos
taken from 69 different Hollywood movies. The actions
appearing in the dataset are: ’answering phone’, ’driving
car’, ’eating’, ’fighting’, ’getting out of the car’, ’hand shak-
ing’, ’hanging’, ’kissing’, ’running’, ’sitting down’, ’sitting
up’ and ’standing’. Example video frames are illustrated
in Figure 2. In our experiments we have adopted the data
partitioning provided in the database, i.e., 823 videos were
used for training the algorithms and 884 videos have been
used for evaluation. We have adopted the Bag of Visual
Words (BoVWs)-based video representation employing the
Histogram of Oriented Gradients (HOG) and the Histograms
of Optical Flow (HOF) descriptors calculated on Space-Time
Interest Points [8].

The action classification rates obtained for both the pro-
posed RCV-CDA and the standard CDA-based classification
schemes are illustrated in Table III. As can be seen in this
Table, the proposed RCV-CDA-based classification scheme
outperforms the one based on standard CDA algorithm in
both cases, providing 3% and 2% improvement on the
i3DPost and the Hollywood2 data sets, respectively.

Table III
CLASSIFICATION RESULTS ON THE I3DPOST AND HOLLYWOOD2 DATA

SETS

Data set CDA RCV-CDA
i3DPost 90.63% 93.75%
Hollywood2 38.35% 40,50%

V. CONCLUSIONS

In this paper, we proposed an optimization scheme aiming
at the optimal class representation for CDA-based data
projection. This has been done by optimizing the CDA
criterion with respect to both the data projection matrix
and the subclass representative vectors following an iterative

Figure 2. Example video frames depicting all the 12 action classes of the
Hollywood2 database.

optimization scheme. The proposed RCV-CDA algorithm
has been evaluated on standard classification problems, as
well as on two publicly available action recognition data sets
providing enhanced classification performance, compared to
the standard CDA approach.
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