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ABSTRACT

In this paper, we propose a novel classification method in-
volving two processing steps. Given a test sample, the train-
ing data residing to its neighborhood are determined. Classi-
fication is performed by a Single-hidden Layer Feedforward
Neural network exploiting labeling information of the train-
ing data appearing in the test sample neighborhood and us-
ing the rest training data as unlabeled. By following this ap-
proach, the proposed classification method focuses the classi-
fication problem on the training data that are more similar to
the test sample under consideration and exploits information
concerning to the training set structure. Compared to both
static classification exploiting all the available training data
and dynamic classification involving data selection for clas-
sification, the proposed active classification method provides
enhanced classification performance in two publicly available
action recognition databases.

Index Terms— Active classification, dynamic classifica-
tion, human action recognition, Single-hidden Layer Feedfor-
ward Neural network, Extreme Learning Machine

1. INTRODUCTION

Supervised classification methods can be categorized depend-
ing on the way they utilize the available training data, in static
and dynamic ones. Static classification methods employ all
the available training data, and the corresponding class la-
bels, in order to train a (universal) classification model, that
will be used in order to classify any (unknown) test sample.
Dynamic classification methods involve a model adaptation
process based on the test sample to be classified. It has been
shown that, by exploiting the information appearing in the test
sample under consideration, dynamic classification methods
can provide enhanced classification performance, compared
to the static ones.

A dynamic classification method exploiting sparsity con-
straints has been proposed in [1]. A given test sample is in-
volved in a L1-minimization-based class-independent regres-
sion process by using an overcomplete dictionary formed by
all the available training data. Multiple reconstruction sam-
ples are, subsequently, produced by exploiting the reconstruc-
tion weights corresponding to each class independently and

the test sample under consideration is classified based on the
minimum reconstruction error classification rule. The Dy-
namic Committee Machine (DCM) has been proposed in [2].
DCM employs five state-of-the-art classifiers in order to de-
termine five classification results for a given test sample. The
obtained classification results are, finally, fused by using test
sample-specific combination weights. A dynamic classifica-
tion scheme has been proposed in [3] for human action recog-
nition. The classification process involved person identifica-
tion and action classification based on a classifier trained by
using training data of the recognized person. A dynamic clas-
sification method involving training data selection and Linear
Discriminant Analysis (LDA)-based data classification is pro-
posed in [4]. The procedure used in order to determine an ap-
propriate training set for LDA-based data projection and clas-
sification is intuitive and effective. However, the LDA-based
classification approach in this setting sets the assumption of
linearly separable classes and is prone to the Small Sample
Size problem relating to statistical learning models [5]. In
order to overcome these drawbacks, the method has been ex-
tended so as to exploit an Artificial Neural Network-based
non-linear classification scheme [6]. A dynamic classification
scheme involving optimization-based feature space partition-
ing has been proposed in [7]. In [7], multiple linear classifiers,
each performing on a feature space region, are learned, while
a test sample is classified by the classifier responsible for the
corresponding region.

In this paper, we propose a classification method inspired
by relevant work in Active Vision [8, 9]. Motivated by the
fact that the structure of the human retina is such that only a
small neighborhood around the fixation point [10] is captured
in high resolution by the fovea, while the rest of the scene is
captured in lower resolution by the sensors in the periphery
of retina, it has been shown [11, 12, 13] that by following an
Active Vision-based approach several computer vision tasks,
like image segmentation and motion estimation, can be better
described and addressed. Based on this fact, we investigate
the applicability of this approach to classification problems.
To this end, we propose a dynamic, noted as active hereafter,
classification method involving two processing steps. Given
a test sample, which is considered to be a fixation point in
a high-dimensional feature space, we determine the training
data appearing in its neighborhood by exploiting its similarity



with all the available training data. We, subsequently, perform
semi-supervised classification by employing all the available
training data and the class labels of the training data appearing
in the test sample neighborhood. By following this approach,
the proposed classification method focuses the classification
problem on the training data that are more similar to the test
sample under consideration. In addition, it exploits informa-
tion concerning to the training set structure, which is lost in
other dynamic classification schemes involving labeled data
selection for classification [3, 4, 6].

The proposed method employs the, recently proposed,
semi-supervised Extreme Learning Machine (SELM) al-
gorithm [14] for Single-hidden Layer Feedforward Neural
(SLFN) network training and is evaluated in human action
recognition exploiting the, recently proposed, Action Bank
[15] action video representation. It should be noted though,
that the same methodology can be applied by employing
other semi-supervised classification schemes. Compared to
both static classification exploiting all the available training
data and dynamic classification involving data selection for
classification, the proposed method provides enhanced clas-
sification performance in two publicly available databases.

The paper is structured as follows. The proposed method
is described in Sections 2. Section 3 presents experiments
conducted in order to evaluate its performance. Finally, con-
clusions are drawn in Section 4.

2. PROPOSED METHOD

As it has been previously described, the proposed method in-
volves training data selection and semi-supervised classifica-
tion. We describe these two processing steps in Subsections
2.1 and 2.2, respectively. We, subsequently, describe the pro-
posed active classification method in Subsection 2.3.

2.1. Data Selection

Let us denote by U a vector database containing vectors vi ∈
RD, i = 1, . . . , N , each belonging to one of the C classes
forming a class set C. We denote the class label of vector
vi by using ci. Let us, also, assume that a test sample is
represented by the corresponding test vector vt ∈ RD. We
would like to determine the l training vectors that reside to
the test vector neighborhood in the high-dimensional feature
space RD. To this end, we calculate the similarity of vt with
all the training vectors vi, i.e.,:

si = ∥vi − vt∥−1
2 . (1)

The obtained similarity values are sorted in a descending or-
der and the l training vectors that reside to vt neighborhood
are the ones providing the l highest similarity values. In our
experiments, l is automatically determined by l = N/K,
where K is a user specified parameter value.

Alternatively, one may cluster the training vectors vi in
K groups, e.g., by applying K-Means algorithm, and select
the training vectors belonging to the group where st belongs
to, similar to [4, 6]. This approach has the advantages that the
number of selected training data l is dynamically determined
by the test vector under consideration and that the training set
can be clustered in an offline stage, leading to faster classifi-
cation. However, in the cases where the test vector vt is far
from the corresponding group center, this approach would not
result to optimal training data selection.

2.2. SELM-based classification

Let us denote by vi, i = 1, . . . , l, l+1, . . . , l+u the training
vectors that will be used in order to classify vt. u = N −
l is the number of the training vectors that do not reside to
vt neighborhood. Here we assume that the training vectors
have been ordered by using the similarity values si in (1). We
would like to employ vi, i = 1, . . . , N and the class labels
ci, i = 1, . . . , l corresponding to the training vectors residing
to vt neighborhood in order to train a SLFN network for vt

classification. We employ the SELM algorithm [14] to this
end.

In SELM, the network input weights Win ∈ RD×H and
the hidden layer bias values b ∈ RH are randomly assigned,
while the network output weights Wout ∈ RH×C are analyt-
ically calculated. H refers to the number of neurons forming
the network hidden layer. The network target vectors ti ∈ RC

are set to tij = 1 for ci = j, tij = −1 for ci ̸= j and tij = 0
otherwise. Let wj , uk and ukj denote the j-th column of
Win, the k-th row of Wout and the j-th element of uk, re-
spectively. For a given hidden layer activation function Φ(),
the output oi = [oi1, . . . , oiC ]

T of the SELM network corre-
sponding to training action vector vi is calculated by:

oik =
H∑
j=1

ukj Φ(wj , bj ,vi), k = 1, ..., C. (2)

Many activation functions Φ() can be employed for the
calculation of the hidden layer output, such as sigmoid, sine,
Gaussian, hard-limiting and Radial Basis function (RBF). The
most popular choice is the sigmoid function, i.e.:

Φsigmoid(wj , bj ,vi) =
1

1 + e−(wT
j vi+bj)

, (3)

By storing the hidden layer neuron outputs in a matrix Φ:

Φ =

 Φ(w1, b1,v1) · · · Φ(w1, b1,vN )

· · ·
. . . · · ·

Φ(wH , bH ,v1) · · · Φ(wH , bH ,vN )

 , (4)



SELM solves the following optimization problem:

Wout = argmin
Wout

∥WT
outΦ−T∥F ,

s.t. :

N∑
i=1

N∑
j=1

wij

(
WT

outϕi −WT
outϕj

)2
= 0, (5)

where ϕi is the i-th column of Φ, i.e., the network hidden
layer output for vi, T ∈ RC×N is a matrix containing the
network target vectors ti and wij is a value denoting the sim-
ilarity between ϕi and ϕj .

By solving (5), Wout is given by:

Wout =
((
J+ λLT

)
Φ
)†

JTT , (6)

where J = diag(1, 1, . . . , 0, 0) with the first l diagonal en-
tries as 1 and the rest 0, L is the Graph Laplacian matrix
[16] encoding the similarity between the training vectors and
A† =

(
AAT

)−1
A is the Moore-Penrose pseudoinverse of

AT .

2.3. Dynamic Classification

Let us assume that a test sample is represented by the corre-
sponding test vector vt. We employ vt in order to determine
the l training vectors that reside to its neighborhood by fol-
lowing the procedure described in subsection 2.1. We, subse-
quently, train a SLFN network by exploiting all the N train-
ing vectors and the class labels corresponding to the training
vectors residing to vt neighborhood by following the proce-
dure described in subsection 2.2. Finally, vt is introduced to
the trained SLFN network and is classified to the class corre-
sponding to the maximal network output, i.e.,:

ct = argmax
j

otj , j = 1, . . . , C. (7)

3. EXPERIMENTS

In this Section we present experiments conducted in order to
evaluate the proposed active classification method. We con-
ducted experiments on the KTH action database [17] contain-
ing daily actions and the UCF sports action database [18] con-
taining actions appearing in sports. We provide a comprehen-
sive description of these databases in the following. In all the
presented experiments we employ the, recently proposed, Ac-
tion Bank [15] action video representation. We compare the
performance of the proposed dynamic classification method
with that of static classification using all the available train-
ing vectors and with dynamic classification based on train-
ing data selection, similar to [4, 6]. We, finally, compare
the performance of the proposed action classification scheme
with that of other methods proposed in the literature eval-
uating their performance on the KTH and the UCF sports

Fig. 1. Video frames of the KTH action database for the four
different scenarios.

databases. Regarding the parameter values used in the pre-
sented experiments, the values K = 10, H = 1000 have
been used, while the optimal parameter λ value has been de-
termined by following a grid search strategy and using values
λ = 10r, r = −3, . . . , 3.

3.0.1. The KTH action database

The KTH action database [17] consists of 600 low-resolution
(120 × 160 pixel) videos depicting 25 persons, performing
six actions each. The actions appearing in the database are:
’walking’, ’jogging’, ’running’, ’boxing’, ’hand waving’ and
’hand clapping’. Four different scenarios have been recorded:
outdoors (s1), outdoors with scale variation (s2), outdoors
with different clothes (s3) and indoors (s4), as illustrated Fig-
ure 1. The most widely adopted experimental setting on this
data set is based on a split (16 training and 9 test persons) that
has been used in [17].

3.0.2. The UCF sports action database

The UCF sports action database [18] consists of 150 low-
resolution (720 × 480 pixel) videos depicting actions col-
lected from ten sports, which are typically featured on broad-
cast television channels, such as the BBC and ESPN. The ac-
tions appearing in the database are: ’diving’, ’golf swinging’,
’kicking’, ’lifting’, ’horse riding’, ’running’, ’skating’, ’bench
swinging’, ’swinging’ and ’walking’. The videos were ob-
tained from a wide range of stock footage websites includ-
ing BBC Motion gallery and GettyImages. The collection
represents a natural pool of actions featured in a wide range
of scenes and viewpoints. The Leave-One-Video-Out cross-
validation procedure is used by most action recognition meth-
ods evaluating their performance on this data set. Example
video frames are illustrated in Figure 2.

3.0.3. Experimental Results

Table 1 illustrates the classification rates obtained by apply-
ing the three competing algorithms on the KTH and the UCF



Fig. 2. Video frames of the UCF sports action database.

Table 1. Comparison results with static and dynamic classifi-
cation schemes.

KTH UCF sports
Static 91.7% 90.24%

Dynamic 95.83% 93.42%

Active 97.7% 95%

sports action databases. As can be seen, dynamic classifica-
tion results to enhanced classification performance, compared
to the static classification case. Furthermore, it can be seen
that the proposed active classification method, by incorporat-
ing information concerning to the action classes structure in
the learning process, further increases the classification per-
formance for both databases providing 97.7% and 95% in the
KTH and the UCF sports databases, respectively. The corre-
sponding confusion matrices are illustrated in Figures 3 and
4.

Finally, we compare the performance of the proposed ac-
tion classification scheme with that of other methods eval-
uating their performance on the KTH and the UCF sports
databases in Table 2. As can be seen, the proposed action
classification scheme compares favorably with other state of
the art methods, recently proposed in the literature.

Fig. 3. Confusion matrices on the KTH database.

Table 2. Comparison results on the KTH and UCF sports
action databases with other methods.

KTH UCF sports
Method [19] 94.3% -
Method [20] 94.5% -
Method [21] - 85.2%

Method [22] - 85.6%

Method [23] 93.9% 86.5%

Method [24] 94.5% 87.3%

Method [25] 94.5% 91.3%

Method [15] 98.2% 95%
Proposed Scheme 97.7% 95%

Fig. 4. Confusion matrices on the UCF sports database.

4. CONCLUSION

In this paper we proposed a novel classification method in-
spired by relevant work in Active Vision. The proposed
method focusses the classification problem on the training
data that are more similar to the test sample under consider-
ation and exploits information concerning to the training set
structure. Compared to both static classification exploiting
all the available training data and dynamic classification in-
volving data selection for classification, the proposed active
classification method provides enhanced classification perfor-
mance in two publicly available action recognition databases.
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