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ABSTRACT
A novel method is introduced for exploiting the support
vector machine and additional discriminant constraints in
nonnegative matrix factorization. The notion of the proposed
method is to find the projection matrix that projects the data
to a low-dimensional space so that the data projections have
minimum within-class variance, maximum between-class
variance and the data projections between the two classes are
separated by a hyperplane with maximum margin. Experi-
ments were performed on several two-class UCI data sets, as
well as on the Cohn-Kanade database for facial expression
recognition. Experimental results showed that the proposed
method achieves better classification performance than the
state of the art nonnegative matrix factorization and discrim-
inant nonnegative matrix factorization followed by support
vector machines classification.

Index Terms— Non-negative Matrix Factorization, Sup-
port Vector Machines, Joint Optimization, Maximum Margin
Classification

1. INTRODUCTION

Given the nonnegative matrix X ∈ ℜN×M , nonnegative ma-
trix factorization (NMF) [1] searches for a pair of nonnegative
matrices Z ∈ ℜN×L, H ∈ ℜL×M whose product approx-
imates X, i.e., the objective of NMF is the minimization of
the reconstruction error:

argmin
Z,H

{D(X∥ZH)} (1)

subject to zil ≥ 0, hlj ≥ 0. (2)

X is the data matrix, whose column xj , j = 1 . . .M , repre-
sents the j-th element vector of dimension N . Z is a basis
matrix, that projects the data to a space with dimensional-
ity L. By setting L << N data dimensionality reduction is
achieved. Finally, H is the matrix of the data projections. In
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discriminant NMF (DNMF) [2] additional discriminant con-
straints to the cost function of NMF are incorporated, by min-
imizing the Fisher criterion:

argmin
Z,H

{D(X∥ZH) + γtr[Sw]− δtr[Sb]} (3)

subject to zil ≥ 0, hlj ≥ 0, (4)

where Sw and Sb are the within-class and between-class scat-
ter matrices of the projected data, respectively,

Sw =
C∑

c=1

Mc∑
j=1

(hc
j − h̄c)(h

c
j − h̄c)

T (5)

Sb =
C∑

c=1

Mc(h̄c − h̄)(h̄c − h̄)T , (6)

where C is the number of classes, Mc is the cardinality of
class c, hc

j denotes the projected data of class c, h̄c is the
mean vector of class c, h̄ is the mean vector of all classes and
tr[·] denotes the trace operator.

After NMF (or DNMF) is performed, support vector
machines (SVMs) [3] are employed on the projected data
for classification. The objective of SVM is to find the
maximum-margin hyperplane, i.e., the hyperplane whose
distance from the nearest data of each class is maximal. The
elements, whose removal from the training data set change
the maximum-margin hyperplane are called support vectors.

Apart from DNMF, several other modifications of NMF
and SVM exist, that impose additional constraints to the
objective functions of NMF and SVM, respectively, for en-
hanced discrimination ability of the data projections, such
as the principal components analysis NMF (PCA-NMF) [4],
which maximizes the coefficient matrix covariance, the spa-
tially localized NMF (LNMF) [5], which imposes sparseness
constraints to the basis matrix and the use of the separable
case approximation (SCA) algorithm [6], which computes the
SVM on the modified separable training data. In these meth-
ods, data representation (NMF) and classification (SVM)
occur in independent steps.

In this paper, data representation through DNMF and clas-
sification through SVMs are formulated into a single objec-



tive function, whose optimization aims the projection of the
data in a space with reduced dimensions, ensuring that the
data projections have minimum within-class variance, maxi-
mum between-class variance and the data projections between
the two classes are separated with maximum margin. More
precisely, the maximum-margin hyperplane is defined as a lin-
ear combination of the data projections hj , j = 1, . . . ,M and
it is incorporated in the objective function of DNMF.

2. DISCRIMINANT NMF WITH SVM CONSTRAINTS

Let D = {{xj , yj}, j = 1, ...,M,xj ∈ ℜN , yj ∈ {−1, 1}}
be the set of M training data, where xj denote the data points
and yj are the corresponding labels. In the standard approach,
first NMF (or DNMF) is employed in order to find two non-
negative matrices Z, H, that minimize the reconstruction er-
ror of the data matrix X = [x1, . . . ,xM ] according to (1) (or
(3)), where D(X∥ZH) denotes the Frobenius norm:

D(X∥ZH) = ∥X− ZH∥2 (7)

or the Kullback-Leibler divergence:

D(X∥ZH) =
∑
i,j

xij ln

(
xij∑L

l=1 zilhlj

)
+

L∑
l=1

zilhlj − xij (8)

between X and ZH. Then, SVM is performed on the pro-
jected data hj = ZTxj in order to find the hyperplane that
maximizes the margin 2

∥w∥ between the two classes or, equiv-
alently,

argmin
w

1

2
∥w∥22 (9)

subject to yj(w
Thj + b)− 1 ≥ 0,∀j = 1, . . . ,M, (10)

where w is the normal vector to the hyperplane and b is the
bias. Taking into account the Lagrangian multipliers method
and the KKT conditions, the objective of SVM can be written
in the form:

min
aj

1

2

M∑
j=1

M∑
k=1

ajakyjykh
T
j hk −

M∑
j=1

aj

 (11)

subject to aj ≥ 0,∀j = 1, . . . ,M, (12)

where aj are the Lagrange multipliers.
In this paper, we exploit the SVM constraints in the opti-

mization framework of DNMF, i.e., we want to find a nonneg-
ative base matrix Z so that, the data projections hj minimize
the reconstruction error (8), minimize the within-class vari-
ance Sw, maximize the between-class variance Sb and they
are separated with maximum margin by the hyperplane w,
which, according to the representer theorem [7], lies in the
span of the data projections w =

∑M
j=1 ajyjhj . This is ac-

complished by combining the cost functions (3) and (11) into

a single objective function:

F (zil, hlj , aj) = λD(X∥ZH) + γtr[Sw]− δtr[Sb] (13)

+
1

2

M∑
jk

akajykyj

L∑
l

hljhlk −
M∑
j

aj ,

where D(X∥ZH) is given by (8), which we want to minimize
with respect to zil, hlj , aj , subject to the constraints:

zil ≥ 0, hlj ≥ 0, aj ≥ 0, and
N∑
i=1

zil = 1, ∀l = 1, . . . , L.

(14)
The direct minimization of (13) is difficult. However, a

local minimum of (13) can be found, by performing the EM
algorithm, since the objective function (13), subject to the
constraints (14), is convex with respect to either zil, hlj or
aj . This can be proved by showing that:

∂2

∂z2il
F (zil) = λ

∑
j

xijh
2
lj

(
∑

k zikhkj)
2 ≥ 0(15)

∂2

∂h2
lj
F (hlj) =

∑
i
xij

hc2
lj

+ 2γ
(
1− 1

Mc

)
− 2δ

(
1

Mc
− 1

M

)
+ a2jy

2
j ≥ 0(16)

∂2

∂a2j
F (aj) =

∑
l

h2
lj ≥ 0 ,(17)

∀zil, hlj , aj ≥ 0 and Mc ≥ 1 + δ/γ, where, for simplicity in
notation, we defined:

F (zil) = F (zil, hlj , aj)|hlj ,aj=constant (18)
F (hlj) = F (zil, hlj , aj)|zil,aj=constant (19)
F (aj) = F (zil, hlj , aj)|zil,hlj=constant. (20)

By choosing γ ≥ δ the condition Mc ≥ 2 is obtained, which
means that the convexity holds when each class has at least
two samples. This is a very loose restriction, which is sat-
isfied in all the conducted experiments. Therefore, a local
minimum of (13) can be found by minimizing three auxil-
iary functions G(zil, z

(t)
il ), G(hlj , h

(t)
lj ) and G(aj , a

(t)
j ) for

the functions F (zil), F (hlj) and F (aj), respectively. The
function G(x, x(t)) is defined to be an auxiliary function for
F (x) if G(x, x(t)) ≥ F (x) and G(x, x) = F (x). It is proven
in [1] that if G(x, x(t)) is an auxiliary function for F (x), then
the minimization of G(x, x(t)) with respect to x leads to min-
imization of F (x). As a consequence, F (x) is monotonically
decreasing under the update rule:

x(t+1) = argmin
x

{G(x, x(t))}. (21)

2.1. Minimization of F (zil, hlj , aj) w.r.t. zil

The function

G(zil, z
(t)
il ) = λ

[∑
ij (xij lnxij − xij)−

∑
ijl xij

z
(t)
il hlj∑

m z
(t)
imhmj



×
(
ln zilhlj − ln

z
(t)
il hlj∑

m z
(t)
imhmj

)
+
∑

ijl zilhlj

]
+ γtr[Sw]− δtr[Sb]

+ 1
2

∑M
jk akajykyj

∑M
l hljhlk −

∑M
j aj (22)

is an auxiliary function for the cost function F (zil). The
derivation of (22) is straightforward from the derivation of
the update rule of zil in NMF [8]. The minimization of (22)
is performed by setting the partial derivative of G(zil, z

(t)
il )

with respect to zil to zero. As a result, F (zil) subject to the
constraints zil ≥ 0 and

∑L
l=1 zil = 1 is non-increasing under

the following update rules:

z
′(t+1)
il =

∑
j

xij
hlj∑

m z
′(t)
im hmj

1∑
j hlj

z
′(t)
il (23)

z
(t+1)
il =

z
′(t+1)
il∑N

i=1 z
′(t+1)
il

. (24)

The constraint
∑L

l=1 zil = 1 ensures that the nonnegative ba-
sis matrix Z is sparse.

2.2. Minimization of F (zil, hlj , aj) w.r.t. aj
The function

G(aj , a
(t)
j ) = λD(X∥ZH) + γtr[Sw]− δtr[Sb]

+
1

2

∑
jk

A+
jka

(t)
k

a
(t)
j

a2
j −

1

2

∑
jk

A−
jka

(t)
j a

(t)
k

×

(
1 + ln

ajak

a
(t)
j a

(t)
k

)
−
∑
j

aj , (25)

where Ajk = yjyk
∑

l hljhlk, A+
jk = max(Ajk, 0) and

A−
jk = max(−Ajk, 0), is an auxiliary function for the cost

function F (aj). The derivation of the auxiliary function (25)
is straightforward from the derivation of the update rules of
aj in SVM [9]. By setting the partial derivative of G(aj , a

(t)
j )

with respect to aj to zero, the following update rule for aj is
derived:

a
(t+1)
j =

1 +
√

1 + 4
∑

k A
+
jka

(t)
k

∑
k A

−
jka

(t)
k

2
∑

k A
+
jka

(t)
k

a
(t)
j . (26)

2.3. Minimization of F (zil, hlj , aj) w.r.t. hlj

The function

G(hlj , h
(t)
lj ) = G1(hlj , h

(t)
lj ) +G2(hlj , h

(t)
lj ), (27)

where

G1(hlj , h
(t)
lj ) = λ

[∑
ij (xij lnxij − xij)−

∑
ijl xij

zijh
(t)
lj∑

m zimh
(t)
mj

×
(
ln zilhlj − ln

zilh
(t)
lj∑

m zimh
(t)
mj

)
+
∑

ijl zilhlj

]
+ γtr[Sw]− δtr[Sb],

(28)

and

G2(hlj , h
(t)
lj ) = 1

2

∑
ljk

B+
jkh

(t)
lk

h
(t)
lj

h2
lj − 1

2

∑
ljk B

−
jkh

(t)
lj h

(t)
lk

×
(
1 + ln

hljhlk

h
(t)
lj h

(t)
lk

)
−
∑

j aj , (29)

Bjk = ajakyjyk, B+
jk = max(Bjk, 0) and B−

jk = max(−Bjk,
0) is an auxiliary function for the cost function F (hlj). The
derivation of the auxiliary function (27)-(29) is straightfor-
ward from the derivation of the update rules of hlj in NMF
[8] and aj in SVM [9]. By setting the partial derivative of
G(hlj , h

(t)
lj ) with respect to hlj to zero, the following update

rule for hlj is derived:

hlj =
−T1+

√
T 2
1 +4T2

[
λ
∑

i xij

zilh
t
lj∑

m zimht
mj

+
∑

k B−
jkh

t
jlh

t
lk

]
2T2

,
(30)

where:

T1 = λ− 2γ 1
Mr

∑Mr

k=1,k ̸=j hlk − 2δ 1
Mr

∑Mr

k=1,k ̸=j hlk + 2δ 1
M

∑M
k=1,k ̸=j hlk

(31)
and:

T2 =
∑
k

B+
jkh

t
lk

ht
lj

+ 2γ

(
1− 1

Mr

)
− 2δ

(
1

Mr
− 1

M

)
,

(32)

2.4. Minimization of F (zil, hlj , aj) w.r.t. zil, hlj and aj

Based on the analysis in subsections 2.1-2.3, the cost func-
tion F (zil, hlj , aj) (13) is non-increasing under the iterative
update rules (23), (24), (26) and (30). In each iteration, the
update rules are computed sequentially, until the convergence
of the cost function to a local minimum, i.e, when the change
in the value of F (zil, hlj , aj) in two successive iterations is
very small. Experimental results showed that F (zil, hlj , aj)
converges to a local minimum in approximately 1000 itera-
tions. In equation (13), the parameter λ regulates the signifi-
cance of the NMF part in the objective function. During the
first iterations λ takes large values, increasing the significance
of the correct data representation. λ decreases exponentially
with the number of iterations t, according to λ0/(1 + e)t,
where the parameter e << 1 regulates the decrease rate. λ
plays an important role in the classification decision. Experi-
mental results showed that typical values for λ0 are λ0 = 100
or λ0 = 1000, while the decrease rate e takes values in the
range from 10−3 to 10−2. Moreover, the proper values for
the weights γ and δ were experimentally found to be 0.1 and
0.05, respectively.

When the algorithm converges, the train data are projected
to the reduced dimensional space using the transpose base
matrix ZT . Alternatively, the data projections hj can be esti-
mated using the pseudo-inverse Z† = (ZTZ)−1ZT , or by the



multiplicative update rule (30). The test data are projected to
the reduced dimensional space accordingly. The maximum
margin hyperplane of SVM is computed by:

w =
M∑
j=1

ajyjhj (33)

b =
1

|MSV |
∑

j∈MSV

(
wThj − yj

)
(34)

where MSV denotes the set of support vectors and, finally,
the classification decision on the train and test data is taken
according to

yj = sign
(
wThj + b

)
. (35)

3. EXPERIMENTAL RESULTS

In this section, an experimental evaluation of the proposed
DNMF with SVM constraints optimization framework (DN-
MFSVM) is presented. In Subsection 3.1, DNMFSVM was
employed on seven two-class UCI data sets and in Subsec-
tion 3.2, DNMFSVM was performed on the Cohn-Kanade
database for facial expression recognition. In all experiments,
the classification accuracy of DNMFSVM was compared
to the accuracy of the state of the art first NMF then SVM
(NMF+SVM) and first DNMF then SVM (DNMF+SVM)
approaches.

3.1. UCI Databases

In the first experiment, we tested the performance of DN-
MFSVM for varying values of the reduced dimensionality L
on the liver disorders data set [10]. The classification error for
the DNMFSVM, NMF+SVM and DNMF+SVM algorithms
was computed by using the ten-fold-cross-validation method.
The results are depicted in Table 1. We notice that the clas-
sification error of DNMFSVM decreases with the increase of
dimensions L. Such behavior is not observed in the state of
the art NMF+SVM and DNM+SVM methods. Moreover, the
classification error of DNMFSVM is smaller than the classi-
fication error of NMF+SVM and DNMF+SVM when L ≥ 2.

In the next experiment, the performance of DNMFSVM
was tested in six more two-class data sets from the UCI
repository [10]: the ionoshpere data set, the hill/valley and
hill/valley with noise data sets, the pima Indians diabetes
data set and the Wisconsin breast cancer (prognostic and
diagnostic) data sets. The classification errors of the pro-
posed DNMFSVM and the state of the art NMF+SVM and
DNMF+SVM methods are shown in Table 2. The origi-
nal and projected data dimensions are shown in the second
and third columns of Table 2, respectively. Except from the
hill/valley and hill/valey with noise data sets (third and fourth
rows of Table 2), where standard training and testing sets are

Table 1. Classification error (%) of NMF+SVM,
DNMF+SVM and DNMFSVM algorithms for variable L for
the liver disorders data set.

L NMF+SVM DNMF+SVM DNMFSVM
1 38.53 38.24 43.82
2 39.41 37.35 32.35
3 40.88 38.82 32.06
4 37.65 39.41 30.59
5 38.82 38.24 28.82
6 42.94 40.88 29.12

Table 2. Classification error (%) of NMF+SVM,
DNMF+SVM and DNMFSVM algorithms for six UCI data
sets

database N L NMF+SVM DNMF+SVM DNMFSVM
ionosphere 34 2 45.14±3.65 42.86±5.08 29.14±3.22
hill/valley 100 10 29.70±0.5 7.05±0.22 7.00±0.26
h/v noise 100 10 38.94±0.5 9.08±0.1 9.08±0.1

pima 8 2 19.47±8.41 14.74±3.91 28.42±8.58
wdbc 30 2 35.96±1.58 33.16±3.57 13.51±2.5
wpbc 30 2 5.26±0.94 2.11±0.7 2.11±0.7

provided, in the rest data sets the ten fold cross validation
method was employed. We notice that in five out of six cases
the proposed DNMFSVM method achieves the minimum
classification error.

3.2. Cohn-Kanade Database

In this Subsection we test the performance of DNMFSVM in
facial expression recognition. The algorithm was employed
on the Cohn-Kanade database [11], which consists of 486
images from 97 persons performing six expressions: anger,
disgust, fear, happiness, sadness and surprise. The size of
the facial images is 40 × 30, thus the original dimension of
the data is N = 1200. In the conducted experiment, the di-
mensionality of the data is reduced to L = 100. The task
of facial expression recognition is divided into two-class sub-
tasks, by selecting 2-combinations from the six classes and
performing five fold cross validation. Figure 1 depicts the
first 25 basis images of the proposed DNMFSVM algorithm
and the state of the art NMF+SVM and DNMF+SVM meth-
ods. From Figure 1 we notice that, the sparseness of the basis
images produced by DNMFSVM is greater than NMF+SVM
and lower than DNMF+SVM method. The average classifi-
cation errors for the proposed DNMFSVM and the state of
the art NMF+SVM and DNMF+SVM methods are shown
in Table 3. We notice that DNMFSVM achieves the lowest
classification error (21.90%) followed by the state of the art
DNMF+SVM (24.90%).



(a) (b) (c)

Fig. 1. A set of 25 basis images for (a) NMF+SVM, (b) DNMF+SVM, (c) DNMFSVM.

Table 3. Classification error (%) of NMF+SVM,
DNMF+SVM and DNMFSVM algorithms for the Cohn-
Kanade Database

NMF+SVM DNMF+SVM DNMFSVM
25.52 24.29 21.90

4. CONCLUSIONS

In this paper a novel method was introduced that incorpo-
rates discriminative constraints and the maximum margin
constraints of SVMs in the objective function of NMF. The
intuition behind the proposed framework was to find the pro-
jection matrix that projects the data to a low-dimensional
space so that the data projections have minimum within-
class variance, maximum between-class variance and the data
projections between the two classes are separated by a hyper-
plane with maximum margin. Experimental results on several
data sets showed the supremacy of the proposed method with
respect to the state of the art NMF and DNMF followed by
SVM classification.
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