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ABSTRACT

In this paper we propose a Bayesian framework for accu-
rate object tracking in stereoscopic sequences. Object detec-
tion and forward tracking are first combined according to pre-
defined rules to get a first set of tracked regions candidates.
Backward tracking is then applied to provide another set of
possible object localizations. Moreover, this strategy is ap-
plied herein in stereoscopic video. We introduce a Bayesian
inference algorithm which is used to merge the information
of both forward and backward tracking in order to refine the
tracked region localization results. Experiments, performed
on face tracking, show that the proposed method provides
higher tracking accuracy than a forward tracker.

Index Terms— Stereo Tracking, Forward-Backward
Tracking, Variational Inference

1. INTRODUCTION

Object tracking is an important problem in video semantic
analysis, surveillance, etc. Many methods have been pro-
posed to solve it [1]. The objective of a tracking algorithm
is to locate in each frame a region of interest (ROI), usually
depicting an object, a face or a human body. In the follow-
ing, we use the term object to describe any such entity to
be tracked. In many works, this problem is formulated in a
stochastic Bayesian framework, [2], where the variables used
to model the tracked ROIs are assumed to be indirect noisy
observations of some variables that model the region trajec-
tory. These variables are modeled as random variables that
obey a stochastic model.

In this work, a Bayesian post-processing methodology is
introduced that can refine the results of a forward-backward
(FB) tracking strategy algorithm [3] when applied on a stereo
video. The proposed methodology exploits the abundant
information obtained by this FB tracking strategy which is
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richer than the information exploited by the standard forward
tracking on single view videos. Indeed, the proposed method-
ology exploits and combines the results of both forward and
backward tracking over time (combined with periodic ob-
ject detection) on the left and right channel of a stereoscopic
sequence of frames to increase the tracking accuracy.

We formulate the problem in a variational Bayesian in-
ference framework [7], where it is assumed that the ROI co-
ordinates derived by the above described FB tracking strat-
egy are noisy observations of the coordinates of a single ideal
ROI, for each frame in each channel. Additionally, an au-
tomatic relevance determination (ARD) model [7] used for
the exclusion of observations coming from tracking failures
is proposed. Moreover, the coordinates of the ideal ROIs are
modeled as random variables, that are considered hidden (not
directly observed), and a total variation (TV) prior [5] is im-
posed on them, in order to penalize abrupt changes in the es-
timated motion of the tracked object.

Given the observation and prior models, which are de-
scribed in section 2 and 3 respectively, a variational Bayesian
inference algorithm is derived in section 4 which estimates the
model parameters and infers posteriors (though approximate,
in order to bypass intractabilities) for the hidden variables
(ideal ROI coordinates). In section 4, experiments are pro-
vided that demonstrate the efficiency of the proposed method.

2. OBSERVATION MODEL

In this section, we describe the proposed observation model
for the forward-backward tracking strategy. The goal of the
proposed methodology is to estimate the ideal (unknown)
positions of the object ROIs in each video frame. Such
ROI in the i-th frame is assumed herein to be a rectan-
gular, defined uniquely by the upper-left and lower-right
vertex coordinates, [x1(i), x2(i)]

T , and [x3(i), x4(i)]
T , re-

spectively. These coordinates are assumed to be real num-
bers for the optimization convenience (see Section 4). We
denote by x(i) = [x1(i), x2(i), x3(i), x4(i)]

T and x =
[x(1)T ,x(2)T , . . . ,x(N)T ]T the vector that contains the
coordinates of all ideal ROIs to be estimated. N is the total



number of frames of each channel in the stereo (L+R) video.
To introduce the observation model, we first describe our

data/observations generation procedure. Object detection is
performed periodically every n frames by using a suitably
chosen object detector, e.g. the face detector in [9]. To track
the detected ROI in intermediate frames between the frames
where detection takes place, a tracking algorithm is applied,
both in a forward and backward manner over time. The co-
ordinates of the ROIs extracted by applying this procedure
independently on the left and right channel are denoted by:

zDk (i) = [zDk,1(i), z
D
k,2(i), z

D
k,3(i), z

D
k,4(i)], k = 1, . . . ,KD

i ,

for D = L,R (L denotes left and R denotes right channel)
and for i = 1, . . . , N . KL

i and KR
i are the number of ROIs

in each frame in a channel that vary with time. i denotes the
frame number. We denote also by z = {zLk , zRk } the set of
all extracted coordinates zD = [zDk (1)T , . . . , zDk (N)T ]T for
D = L,R. We further assume that the extracted by tracking
ROIs are noisy measurements of the ideall ROIs. Precisely,
we assume that p(z|x) = p(zL|h)p(zR|h), where

p(zL|h) =
∏
i,k

exp{−λbd
L
k (i)b

L
k (i)

2
‖zLk (i)− x(i)‖22}, (1)

p(zR|h) ∝
∏
i,k

exp{−λbd
R
k (i)b

R
k (i)

2
‖zRk (i)+m(i)−x(i)‖22},

(2)
where h = {x,bR,bL,d} and z = [zLk , z

R
k ]. By b we denote

the set of all the inverse variances bL,R
k(i) [7]:

bR = {bRk (i) : ∀i, ∀k}, bL = {bLk (i) : ∀i,∀k},

b = {bL,bR}, d = {dRk (i), dLk (i) : ∀i,∀k}.

To cope with the multiple distinct extracted ROIs in a frame,
we introduce the binary variables d containing all dD

k (i),
where dD

k (i) = 0 or 1 (where D = L,R) and for constant
i, dD

k contains a single 1. These variables indicate which
extracted ROI is really the noisy outcome of the ideal ROI.
Although the variables d are binary, the algorithm uses their
expected values, which are real numbers in the interval [0, 1].

Furthermore, m(i) = [m1(i),m2(i),m3(i),m4(i)]
T is

the vector containing the variables used to match the i-th ROI
extracted from the right channel with its corresponding one in
the right channel, by assuming that the reference coordinates
system x is that of the left channel. Note also that they also
vary with the frame number i. Herein, we further assume that
m1(i) = m3(i) and m2(i) = m4(i).

A Gamma prior distribution [7] is imposed on each bDk (i):

p(bDk (i)) ∝ bDk (i)−0.5 exp(−0.5bDk (i)), D = L,R.

This is in essence the ARD model described in [7], used to
model the varying nature of the inverse variances of the dis-
tribution in (1) and (2) to enable the model to ameliorate the

influence of the ROIs coming from highly inaccurate tracking
results (e.g. failures by occlusion). Indeed, a very small value
of bDk (i) excludes the zDk (i) ROI from the model. This is
evident by inspecting their updates in (9) and (10): big differ-
ences of observed ROIs with the estimated lead to zero values
of the estimated inverse variances, resulting in not to take in-
accurate ROIs into account.

3. PRIOR MODEL

In this work, we impose a total-variation (TV) prior [5] on x,
aiming at obtaining a smoothed estimate of the ideal ROIs co-
ordinates, since the observed coordinates z contain noise, due
to tracking inaccuracies. This prior has been used success-
fully in image restoration, and the key of its success is the
ability to provide smooth image estimates while preserving
the image edges. Thus, when used in the present problem,
the TV prior smooths the object trajectory (reducing noise),
while in parallel preserves the possible abrupt changes of the
tracked object position. We have:

p(x) ∝ λ4Nx
N−1∏
i=1

exp (−λx‖x(i)− x(i− 1)‖2) . (3)

Following the same reasoning, we use a TV prior for m =
[m(1)T , . . . ,m(N)T ]T . This means, as above, that:

p(m) ∝ λ2Nm
N−1∏
i=1

exp (−λm(‖m(i)−m(i− 1)‖2)) . (4)

4. VARIATIONAL BAYESIAN INFERENCE

The Bayesian paradigm dictates that we should estimate the
variables of model x, by taking their expectation with respect
to their posterior using Bayes rule. However in our case, as
in most models of interest, this is intractable. Thus, the varia-
tional Bayesian methodology is usually employed in order to
obtain an approximate posterior for the model’s hidden vari-
ables, [5], which provides tractable computations.

The goal of the variational Bayesian methodology is to
compute a posterior, q, approximate to p(x,m|z), by mini-
mizing the Kullback-Leibler divergence [7] w.r.t to q:

KL(p||q) =
∫
q(x,m,b) log

q(x,m,b)

p(x,m,b|z)
dxdmdb.

We assume that q(x,m,b) = q(x)(m)q(b), i.e. x , b and m
are independent in the posterior. This approximation is what
helps make the computations tractable.

However, due to the square roots in the priors for x and
m, the intractability still persists, and thus, we resort to min-
imizing an upper bound of the divergence [6], obtained by



applying the inequality
√
w ≤ (w + u)/2

√
u, ∀w, u > 0 to

all the squared terms in (3) and (4), and obtain lower bounds
p̂(x), p̂(m) for p(x), p(m), described as follows:

p̂(a) ∝
N−1∏
i=1

exp

(
− λa

2
√
ua(i))

‖a(i)− a(i− 1)‖22

)
(5)

where a can be either x or m. ux(i) and um(i) are positive
parameters, calculated at each algorithm iteration.

Using the independency assumption of the hidden vari-
ables, and the above inequalities, we define a new quantity to
be minimized w.r.t q(x), q(m) and q(b), as well as w.r.t to
ux(i) and um(i), ∀i, and the parameters λx, λm. This is

L(q(x), q(b), q(m), ux, um, λx, λm) = (6)∫
q(x)q(m)q(b) log

p(z)q(x)q(m)q(b)

p(x)p̂(m)p(b)p(z|x,m,b)
dxdmdb,

where the Bayes’ rule has been used to express the posterior
in terms of the joint distribution.

Next, due to space limitations, without loss of generality,
x(i), m(i), their estimates and zDk (i) denote a single coordi-
nate of the respective vector (e.g. x(i) = x1(i)). This does
not hold in norms. The update equations at t-th iteration for
the posterior estimates as well as the parameters are [6]:

qt(x) = N(µx,Cx), (7)

where Cx = (Bx + λxQ
TUxQ),µx = λbC

−1
x Bz1. Bx

and Ux are diagonal matrices with i-th elements:

Bx(i, i) = λb(

KL
i∑
k

dLk (i)b̂
L
k (i) +

KR
i∑
k

dRk (i)b̂
R
k (i)),

Ux(i, i) =
1√
ux(i)

,

and Q is the first order differences operator. Also,

utx(i) = ‖µx(i)− µx(i− 1)‖22 + [QCxQ
T ]i,i (8)

b̂Lk (i) =
2

1 + ‖zLk (i)− µx(i)‖22 + 4Cx(i, i)
, (9)

b̂Rk (i) =
2

1 + dLk (i)‖zRk (i) + µm(i)− µx(i)‖22 + 4C(i, i)
.

(10)
where C = Cx+Cm. b̂Dk (i) is the mean of bDk (i) w.r.t to the
estimated posterior distribution:

qt(bDk (i)) = Gamma(2, c), ∀i, k,D = L,R. (11)

where c is the denominator of (9) for D = L and (10) for
D = R. Also,

z1(i) =

KL
i∑

k=1

dLk (i)b
L
k (i)z

L
k (i)+

KR
i∑

k=1

dRk (i)b̂
R
k (i)(z

R
k (i)+µm(i)).

In a similar manner:

qt(m) = N(µm,Cm) (12)

is the update for the posterior of m, where Cm = (Bm +
λmQTUmQ),µm = C−1

m Bmz2 and Bm and Um are diag-
onal matrices with elements:

Bm(i, i) = λb

KR
i∑
k

dRk (i)b̂
R
k (i), Um(i, i) = 1/

√
um(i),

utm(i) = ‖µm(i)− µm(i− 1)‖22 + [QCmQT ]i,i, (13)

z2(i) =

KR
i∑

k=1

dRk (i)b̂
R
k (i)(z

R
k (i) + µm(i)).

As for the λx and λm parameters, their update is:

λtx =
4N∑N

i=1 ux(i)
, λtm =

2N∑N
i=1 um(i)

(14)

We have to mention that for d we give a fixed value:

dRk (i) =
1

2KR
i

, dLk (i) =
1

2KL
i

.

One algorithm iteration consists of (7), (8) , (9), (10), (12),
(13) and (14). After convergence or the maximum iteration
number is reached, µx and µm are the estimates of left and
right channel ideal ROI coordinates, respectively.

5. EXPERIMENTS

In the first set of the experiments, we evaluated the perfor-
mance of the algorithms FP and FBP in two sample single-
view videos, where human bodies are tracked. The forward
tracking algorithm (F) based on particle filters [4] was first ap-
plied. The first and middle ROIs depicting the tracked human
was not localized by the tracking algorithm but was specified
manually. In Table 1 we see an improvement in tracking ac-
curacy in two sample videos (see next for the definition of the
tracking accuracy metric used).

In the second set of the experiments we evaluate the per-
formance of the proposed post-processing algorithm in stereo
videos. We perform first single channel face tracking on two
stereo videos (indepedently on the right and left channel), us-
ing a face detector [9] and a forward tracking procedure [4]
based on particle filters. The face detection algorithm, used
to periodically re-initialize the tracker, is based on Haar-like
feature detection and, in parallel, exploits color skin infor-
mation [9]. For each video, face detection was performed in
varying frequency: every 20, 30 and 40 frames as can be seen
in Table 2. The forward (F) tracking algorithm, whose results
we try to improve with the proposed post-processing frame-
work, works as follows. Face detection is performed period-
ically every n frames. The frames between successive face



Table 1. Algorithm performance (â) in single view video
Video Name F FP FBP

WalkByShop1front2 0.178 0.196 0.204
OneStopMoveEnter1cor4 0.522 0.531 0.539

Table 2. Algorithm performance (â) using stereo videos. The
results shown for FP and FBP concern the left channel, while
for F and FBSP the results for the left and right channel are
seperated by a slash.

Video n F FP FBP FBSP
Vid.1 20 0.614/0.643 0.620 0.625 0.634/0.65
Vid.1 30 0.604/0.62 0.612 0.624 0.630/0.64
Vid.1 40 0.580/0.6 0.589 0.594 0.601/0.62
Vid.2 20 0.431/0.53 0.541 0.555 0.561/0.64
Vid.2 30 0.462/ 0.52 0.546 0.554 0.555/ 0.64
Vid.2 40 0.415/0.49 0.498 0.521 0.522/ 0.62

detections are extracted by the previously mentioned track-
ing algorithm. Tracking accuracy is evaluated in four scenar-
ios: a) forward tracking (F) without post-processing and b)
forward tracking c) forward-backward tracking and post pro-
cessing (FBP), d) forward-backward tracking plus stereo post
processing (FBSP). It must be noted that the parameter λb
was set equal to 300 and kept fixed in every experiment. The
Average Tracking Accuracy (â) [8] metric was used to mea-
sure tracking accuracy:

â =
1

N

N∑
i=1

Di

⋂
Gi

Di

⋃
Gi

(15)

where Di is the estimated ROI area, while Gi is the ideal
(ground truth) ROI areas obtained by manual video anno-
tation. For the FBSP algorithm, Di corresponds to µx(i)
when assessing tracking accuracy of the left channel and to
µx(i)− µm(i) of the right channel. For FP and FBP, Di cor-
responds to µx(i), since there is only one channel and thus m
is not estimated (D = L).

Table 2 depicts tracking accuracy in two sample stereo
videos, video 1 and video 2, having 775 and 665 frames each,
respectively, for face detection frequency n = 20, n = 30,
n = 40. For both videos we see an increase of the tracking
accuracy when the post-processing methodologies are em-
ployed.

6. CONCLUSIONS

We have presented a post-processing Bayesian methodology
that refines the outputs of standard tracking algorithms. The
results are promising and show that the information provided
by a forward-backward tracking as well as stereo tracking can
boost the tracking performance. In future, we plan to aug-
ment the proposed Bayesian methodology by using a more

sophisticated prior for the ROIs coordinates. More accurate
estimation of m will also be pursued.
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