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Abstract—A new musical audio denoising technique is pro-
posed, when the noise is modeled by an α−stable distribution.
The proposed technique is based on sparse linear regression with
structured priors and uses Markov Chain Monte Carlo inference
to estimate the clean signal model parameters and the α−stable
noise model parameters. Experiments on noisy Greek folk music
excerpts demonstrate better denoising for the α−stable noise
assumption than the Gaussian white noise one.

I. INTRODUCTION

Over the past decades, signal processing applications have
been widely based on the Gaussian assumption. However,
there are applications, where this assumption does not hold.
Such applications entail non-Gaussian phenomena that exhibit
outliers, impulsiveness, and asymmetric characteristics [1], [2],
[3], [4]. Recently, α−stable distributions have been employed
to model these phenomena. The α−stable distributions possess
several useful properties, including infinite variance, skewness,
and heavy tails [5], [6], [7]. However, research has been
mostly focused on symmetric α−stable distributions within
a Bayesian framework, since the probability density func-
tion (PDF) for α−stable distributions cannot be analytically
described in general. In [8], a particular mathematical rep-
resentation was exploited to infer the α−stable parameters
using the Gibbs sampler, while in [9], [10] Monte Carlo
Expectation-Maximization (MCEM) and Markov Chain Monte
Carlo (MCMC) methods were introduced, which are based
on the Scale Mixture of Normals (SMiN) representation of
α−stable distributions. The SMiN property was also ex-
ploited to model symmetric α−stable (SaS) disturbances by a
Gibbs Metropolis sampler [11]. More recently, a random walk
MCMC approach for Bayesian inference in stable distributions
was introduced using a numerical approximation of the like-
lihood function [12]. An analytical approximation of positive
α−stable distribution based on a decomposition into a product
of a Pearson and another positive stable random variable was
proposed in [13]. Finally, a Poisson sum series representation
for the symmetric (SaS) distribution was used to express a
noise process in a conditionally Gaussian framework [4].

In this paper, the noise in musical audio recordings is
modeled by an α−stable distribution. MCMC inference is
used to estimate the signal and the α−stable noise parameters
following similar lines to [12], [14]. The signal is modeled
in the frequency domain using the modified cosine transform

(MDCT) [15] allowing us to exploit the sparsity in the co-
efficient expansion. That is, the signal is modeled by two
MDCT bases. The first MDCT base describes the tonal parts
of the signal, while the second one describes its transient
parts as in [16]. However, here the residual noise is treated
as α−stable noise extending [16] where a Gaussian white
noise was assumed. Binary indicator variables with structured
priors are also introduced to enforce sparsity in the expansion
coefficients of each MDCT base. A standard MCMC technique
is used to infer the model parameters. The first experimental
results, reported here, demonstrate a superior performance
for the α−stable noise with respect to the power of the
remaining noise after denoising and the acoustic perception
of the denoised recordings.

The paper is organized as follows. In Section II, the defini-
tion and characteristics/properties of the α−stable distribution
are described, while in Section III the α−stable model and
the inference of α−stable model parameters is formulated.
Signal modelling is presented in Section IV. In Section V,
the experimental results are discussed. Conclusions are drawn
in Section VI.

II. α−STABLE DISTRIBUTION

A random variable (RV) X is drawn from a stable law
distribution fγ,δ(α, β) iff its characteristic function is given
by [6]:

ϕ(ω) = exp (γ ψα,β(ω) + jδω) (1)

where

ψα,β(ω) =

{
−|ω|α[1− j sign (ω)β tan πα

2 ], α ̸= 1
−|ω|α[1 + j sign (ω)β log |ω|], α = 1

(2)

and −∞ < δ < ∞, γ > 0, 0 < α ≤ 2, −1 ≤ β ≤ 1. Thus, a
stable distribution is completely determined by four parame-
ters: 1) the characteristic exponent α, 2) the index of skewness
β, 3) the scale parameter γ, also called dispersion, and 4) the
location parameter δ. A stable distribution with a characteristic
exponent α is called α−stable. The characteristic exponent α
is a shape parameter, which measures the “thickness” of the
tails of the density function and admits any value in the interval
0 < α ≤ 2. If a stable RV is observed, the larger the value of α,
the less likely is its realizations to deviate far from its central
location. A small value of α implies considerable probability
mass in the tails of the distribution. The index of skewness



β, which admits values in the interval [−1, 1], determines the
degree and sign of asymmetry. When β = 0, the distribution is
symmetric about the center δ. Symmetric stable distributions
with characteristic exponent α are called symmetric α−stable
(SaS). If α ̸= 1, the cases β > 0 and β < 0 correspond to
left-skewness and right-skewness, respectively. The direction
of skewness is reversed, if α = 1 [2].

The notations S(α, β, γ, δ) or fα,β(γ, δ) are often used to
denote a stable distribution with parameters α, β, γ and δ. The
PDF of a stable RV exists and is continuous, but it is not
known in closed-form except the following three cases: 1) the
Gaussian distribution S(2, 0, γ, δ) = N (δ, 2γ2), i.e. a normal
PDF with mean δ and variance 2γ2. 2) the Cauchy distribution
S(1, 0, γ, δ) and 3) the Lévy distribution S(0.5, 1, γ, δ). For
all the other cases, several estimation procedures for the PDF
exist that rely on moment estimates or other sample statistics
[7], [17]. The SaS distribution is represented as a SMIN [18]
by exploiting the following product property of the symmetric
α−stable distribution [6], [14]:

Let X and Y > 0 be independent RVs with
X ∼ fα1,0(σ, 0) and Y ∼ fα2,1

(
(cos πα2

2 )1/α2 , 0
)
, then

XY1/α1 ∼ fα1·α2,0(σ, 0).

That is, let ei be independent identically distributed (i.i.d)
RVs drawn from symmetric α−stable distribution with scale
parameter γ and location parameter δ: ei ∼ fα,0(γ, δ). Accord-
ing to the product property, an equivalent representation exists
where ei is Gaussian conditionally on the auxiliary positive
stable random variable ρi [14]:

ei ∼ N (δ, ρiγ
2) (3)

ρi ∼ fα/2,1

(
2
(
cos

πα

4

)2/α
, 0

)
. (4)

III. α−STABLE MODEL PARAMETER ESTIMATION

Following the Bayesian paradigm, the unknown quantities
θ = {α, γ, δ} can be inferred from the known data e:

p(θ|e) = p(α, γ, δ|e) ∝ p(e|α, γ, δ) p(α, γ, δ). (5)

Allowing the prior distribution p(α, γ, δ) to depend on hy-
perpriors with their corresponding hyperparameters θ′ =
{α′, a0, b0,mδ, σδ} we get:

p(θ,θ′, e) = p(e|θ,θ′)p(θ|θ′)p(θ′). (6)

The SaS graphical model depicted in Fig. 1, shows the con-
ditional dependence structure between the parameters of the
hyperparameters. In order to estimate the unknown parameters

α γ δ

α΄ a0 b0 m0 σ0

e

Fig. 1. Graphical model representation for the SaS model. Circles denote
unknown variables, rectangles represent hyperparameters, while arrows denote
the conditional dependence between variables.

of the SaS model, we sample from the posterior distribution
of the parameters θ = {α, γ, δ} using MCMC methods. To
achieve this, conjugate priors for the unknown dispersion,
location, and shape are considered in order to derive analytical
expressions of the corresponding posterior distributions. The
posterior distributions that are then sampled by means of Gibbs
sampling in a straightforward way.

A. Prior distributions

Since the likelihood of the SaS model is Gaussian, con-
jugate priors are chosen for the dispersion and the location
parameters in order to obtain a closed-form expression for the
posterior [14]. The conjugate prior for the dispersion parameter
γ is inverse Gamma with distribution:

p(γ2|a0, b0) = IG

(
a0 +

N

2
,
1

2

N∑
i=1

(yi − δ)2

ρi
+ b0

)
. (7)

The conjugate prior for the location parameter δ is Gaussian
N (δ|mδ, σ

−1
δ ), i.e.

p(δ|mδ, σ
−1
δ ) =

1√
2πσ−1

δ

exp

{
− (δ −mδ)

2

2σ−2
δ

}
. (8)

For the parameter α, the uniform distribution is assumed in its
support α ∈ (0, 2]:

p(α|α′) =
1

α′ =
1

2
, 0 < α ≤ 2. (9)

B. MCMC Inference

Having chosen the prior distributions for the unknown
parameters of the SaS model, the following MCMC scheme
is used in order to sample from the corresponding posterior
distributions:

1) Updating the parameters γ and δ using Gibbs sampling.
The Gibbs sampler consists a standard MCMC technique
that samples iteratively with replacement from the dis-
tribution of each parameter conditioned upon the others
[19]. The samples obtained from the posterior distribution
p(θ|e) are then used to estimate the complete posterior
density distribution.
The conditional posterior distribution for the location
parameter δ that has a Gaussian conjugate prior is given
by [14]:

N

(
1
γ2

∑N
i=1

ei
ρi

+ σδmδ

1
γ2

∑N
i=1

1
ρi

+ σδ
,

1
1
γ2

∑N
i=1

1
ρi

+ σδ

)
. (10)

The full conditional for γ2 that has an inverse Gamma
conjugate prior is the following inverse Gamma distribu-
tion [14]:

IG

(
a0 +

N

2
,
1

2

N∑
i=1

(ei − δ)2 + b0

)
. (11)

2) Updating the parameter α using Metropolis sampling.
The Metropolis - Hastings algorithm (M-H) [20], [21] is
used to estimate the parameter α, since the corresponding
conditional distribution for α is unknown.



a) At each iteration t a candidate point αnew for α is
generated from a proposal symmetric distribution q(·|·).
That is, αnew ∼ q(αnew|α(t)).

b) U is generated from a uniform (0, 1) distribution.
c) If U ≤ A(αnew|α(t)) then αnew is accepted (i.e.,
α(t+1) = αnew), otherwise αnew is rejected (i.e.,
α(t+1) = α(t)). That is, the candidate point αnew

is accepted with probability min {1, A}. Given that
the proposal distribution q(·|·) is symmetrical (i.e.,
q(αnew|α(t))=q(α(t)|αnew)) and a uniform prior p(α)
is considered (i.e., (9)), the acceptance/rejection ratio
A is given by:

A = min

{
1,

∏N
i=1 p(ei|αnew, 0, γ, δ)∏N
i=1 p(ei|α(t), 0, γ, δ)

}
(12)

where p(ei|αnew, 0, γ, δ) and p(ei|α(t), 0, γ, δ) are calcu-
lated for the probability density function as in [6], [22]1.

3) Estimating the auxiliary variable ρi using rejection
sampling.
Rejection sampling is used to sample from the posterior
distribution p(ρ)

p(ρi|ei, γ, δ) ∝ N (ei|δ, ρiγ2)·

· fa/2,1
(
ρi

∣∣∣∣2(cos πα4 )2/α , 0
)
. (13)

It is readily seen that the likelihood forms a valid rejection
function as it is bounded from above:

p(ei|δ, ρiγ2) ≤
1√

2π|ei − δ|
exp

(
−1

2

)
. (14)

Hence, the following rejection sampler can be used to
draw samples from ρi [14]:

i. Samples are drawn from the positive stable distribu-
tion ρi ∼ fa/2,1

(
2
(
cos πα

4

)2/α
, 0
)

.
ii. Samples are drawn from the following uniform dis-

tribution ui ∼ U
(
0, 1√

2π|ei−δ| exp
(
−1

2

))
.

iii. If ui > p(ei|δ, ρiγ2) goto step (i).

IV. SIGNAL MODEL

The audio signal is modeled by three-layers associated
to tones, transients, and noise [16]. Tones and transients are
captured by decomposing the audio signal into two types of
Modified Discrete Cosine Transform (MDCT) atoms [15], one
having long frame length for the tones and one having short
frame length for the transients, while noise is modeled as SaS
noise. That is, the observed signal model is given by:

x =
N∑

k=1

s̃1,kΦ1,k +
N∑

k=1

s̃2,kΦ2,k + e (15)

where N is the number of samples, Φ1,k and Φ2,k are the
MDCT bases and e is the noise term having SaS distribution
with scale γ and location δ modeled as described in (3) and (4).
For simplicity reasons, we assume that δ = 0. The clean audio
signal contains a limited number of frequencies. Thus, the two

1http://www.mathworks.com/matlabcentral/fileexchange/
37514-stbl-alpha-stable-distributions-for-matlab/content/STBL CODE/
stblpdf.m

vectors s̃1 = [s̃1,1, . . . , s̃1,N ]T and s̃2 = [s̃2,1, . . . , s̃2,N ]T are
sparse. To model the sparsity in coefficients s̃i,k, indicator
binary random variables gi,k ∈ {0, 1} are introduced. When
gi,k = 1, the corresponding coefficient s̃i,k has a normal
distribution. If gi,k = 0, s̃i,k is set to zero enforcing sparsity to
this coefficient [16]. The parameters of the signal model are es-
timated by means of MCMC methods. Therefore, appropriate
conjugate priors are chosen for the model parameters in order
to come up with analytical expressions for the corresponding
posterior distributions.

A. Prior Distributions

1) Coefficient priors: The hierarchical prior for the coeffi-
cients is given by [16]:

p(s̃i,k) = (1− gi,k)δ0(s̃i,k) + gi,kN (s̃i,k|0, vi.k) (16)

where δ0(·) is the Dirac delta function, and vi,k has a
conjugate inverse Gamma prior described by p(vi,k) =
IG(vi,k|ai, hi,k) with parameters ai and hi,k. hi,k is a
parametric frequency profile expressed for each frequency
index j = 1, . . . , lframei by a Butterworth low-pass filter
with filter order νi, cut-off frequency ωi, and gain ηi:

hi,k =
ηi

1 +
(
1 + j−1

ωi

)νi
, k = (j, n), (17)

and n = 1, 2, . . . , nframei being a frame index, with
lframei × nframei = N , i = 1, 2.

2) Indicator variable priors: The indicator variables of the
first basis corresponding to tonal parts are given a hor-
izontal prior structure, while the indicator variables of
the second basis corresponding to transient parts are
given a vertical structure. In more detail, the sequence
of indicator variables for the first basis are modeled
by a two-state first-order Markov chain with transition
probabilities P1,00 and P1,11 considered equal for all
frequency indices [16]. The initial distribution π1 =
P (g1,(j,1) = 1)) is given by its stationary distribution,
π1 =

1−P1,00

2−P1,11−P1,00
and (1 − π1) =

1−P1,11

2−P1,11−P1,00
. The

transition probabilities P1,00 and P1,11 are given Beta
priors, B(P1,00|aP1,00

, bP1,00
) and B(P1,11|aP1,11

, bP1,11
)

Similarly, for the second basis the corresponding
transition probabilities P2,00 and P2,11 are consid-
ered equal for all frames and are given Beta priors,
B(P2,00|aP2,00 , bP2,00) and B(P2,11|aP2,11 , bP2,11). The
initial distribution π2 = P (g2,(1,n) = 1)) is learned given
Beta prior B(π2|aπ2 , bπ2).

3) Gain parameter prior: The gain parameter ηi of the filter
described in eq. (17) is given a Gamma conjugate prior,
p(ηi|aηi , bηi) = G(ηi|aηi , bηi) [16].

B. MCMC Inference

The following MCMC scheme is used to sample
from the posterior distribution of the parameters θ =
{s̃i, vi, ηi, Pi,00, Pi,11}i=1,2 ∪

{
π2, ρiγ

2
}

[16].

1) Alternate sampling of (g1, s̃1) and (g2, s̃2).



The parameters (g1, s̃1) and (g2, s̃2) are alternatively sam-
pled one after the other. The likelihood of the observation
x is written as follows

p(x|θ) ∼ exp

(
− 1

2γ2

∥∥∥∥Σρ(x− Φ1s̃1 − Φ2s̃2)

∥∥∥∥2
)

(18)

where Σρ is a diagonal matrix with diagonal elements
[1/

√
ρ1, . . . , 1/

√
ρN ] and ∥ · ∥ is the Frobenius norm.

2) Updating of (gi, s̃i) using Gibbs sampling.
Let x̃i|−i be either x̃1|2 or x̃2|1. A Gibbs sampler is imple-
mented that samples (s̃i,k, gi,k) jointly. Denoting by gi,−k

the set {gi,1, . . . , gi,k−1, gi,k+1, . . . , gi,N} and θgi the set
of Markov probabilities for gi, (a) g(l)i,k is sampled from
p(g

(l)
i,k|gi,−k, θgi , vi, ρiγ

2, x̃i|−i,k) and (b) s̃(l)i,k is sampled
from p(s̃i,k|g(l)i,k, vi, ρiγ

2x̃i|−i,k). An hypothesis testing
problem is set to estimate the first posterior probability
for gi,k [23]:

H0 : gi,k = 1 ⇐⇒ x̃−i,k = s̃i,k + ẽi|−i,k (19)
H1 : gi,k = 0 ⇐⇒ x̃−i,k = ẽi|−i,k. (20)

The following probabilities are thus used to draw values
for gi,k:

p(gi,k = 0|gi,−k, θgi , vi,k, ρiγ
2, x̃i|−i,k) =

1

1 + τi,k
(21)

p(gi,k = 1|gi,−k, θgi , vi,k, ρiγ
2, x̃i|−i,k) =

τi,k
1 + τi,k

(22)

where

τi,k =
p(gi,k = 1|gi,−k, θgi , vi,k, ρiγ

2, x̃i|−i,k)

p(gi,k = 0|gi,−k, θgi , vi,k, ρiγ
2, x̃i|−i,k)

=

√
ρiγ2

ρiγ2 + vi,k
exp

(
x̃2i|−i,kvi,k

2ρiγ2(ρiγ2 + vi,k)

)
×p(gi,k = 1|gi,−k, θgi)

p(gi,k = 1|gi,−k, θgi)
. (23)

The posterior distribution for s̃i,k is given by

p(s̃i,k|gi,k, vi, ρiγ2, x̃i|−i,k) = (1− gi,k)δ0(s̃i,k)

+gi,kN (s̃i,k|µs̃i,k,σ2
s̃i,k

) (24)

where σ2
s̃i,k

= (1/ρiγ
2 + 1/vi,k)

−1 and µs̃i,k =

(σ2
s̃i,k

/ρiγ
2)x̃i|−i,k.

3) Updating of vi using Gibbs sampling.
The conditional posterior distribution of vi,k is given by
[16]

p(vi,k|gi,k, s̃i,k, hi,k) = (1− gi,k) IG(vi,k|ai, hi,k)

+gi,k IG

(
vi,k

∣∣∣∣12 + ai,
s̃2i,k
2

+ hi,k

)
. (25)

4) Updating of ρiγ2 using Gibbs sampling.

p(ρiγ
2|s̃1, s̃2, x) = IG

(
ρiγ

2

∣∣∣∣aρiγ2 +
N

2
,.

bρiγ2 +
∥Σρ(x− Φ1s̃1 − Φ2s̃2)∥2

2

)
. (26)

5) Updating of ηi using Gibbs sampling.
The full posterior distribution of the gain parameter is
given by

p(ηi|vi) = G

ηi∣∣∣∣Nai + aηi ,
∑
k

1

1 +
(

j−1
ωi

)νi

vi,k
+ bηi

 .

(27)
6) Updating of Pi,00, Pi,11 and π2.

The posterior distributions of Pi,00, Pi,11 and π2 are
estimated by means of Metropolis-Hastings algorithm
as described in [16] with corresponding proposed Beta
distributions.

V. EXPERIMENTAL RESULTS

A. Datasets and Parameters

8 musical excerpts (≃ 24s long each) from Greek folk
songs recorded in outdoor festivities were used. Accordingly,
the recordings are noisy. In all excerpts, a clarinet and a drum
are playing. The songs were sampled at 44.1kHz resulting in
T = 220 = 1048576 samples for each song.

The algorithm described in Section IV was tested with the
following parameter values: (a) The frame length for the tonals
and the transients was respectively set to lframe1 = 1024
and lframe2 = 128, respectively. The corresponding numbers
of frames are thus nframe1 = 1024 and nframe2 = 8192
frames. (b) The filter-order νi in (17) was set to ν1 = 6
for the tonals and ν2 = 4 for the transients, respectively. (c)
The cut-off frequency ωi in (17) was set to ωi = lframei/3.
(d) The hyperparameters of the priors for ηi and ρiγ

2 were
chosen to yield Jeffreys non-informative distributions. (e) The
hyperparameters aPi,00 , aPi,11 were set to values 50 and 1,
respectively, weighing more heavily the values between 0.8
and 1. (f) The hyperparameters aπ2 , bπ2 for capturing the
transients were set to 1 and 5000, respectively.

The Gibbs samplers described in Sections III and IV
were run for 500 iterations with a burn-in period of 400
iterations. The estimate of the clean signal was constructed
by s(MMSE) = Φ1s̃

(MMSE)
1 + Φ2s̃

(MMSE)
2 , where MMSE

stands for the Minimum Mean Square Error estimates of the
parameters, which were computed by averaging the values of
s̃1 and s̃2 in the last 100 iterations of the sampler.

B. Performance

In order to measure the performance of a denoising algo-
rithm, the overall output Noise Index (NI) defined as

NIdb = 20 log10
∥x∥

∥x− s(MMSE)∥
(28)

is measured. Since NI expresses the ratio of the original
noisy signal to the estimated noise, the smaller NI values
imply a higher noise power removal and thus better denoising
performance. The output NI values measured for the algo-
rithm developed in Section IV, when α-stable noise residual
is assumed in (15), are listed in Table I for several musical
excerpts. In the same table, the output NI values measured for
the original algorithm proposed in [16], that resorts to Gaussian
noise residuals, are included.



TABLE I. OUTPUT NI VALUES OBTAINED BY THE PROPOSED
ALGORITHM FOR α-STABLE NOISE NOISE RESIDUAL AND THE ALGORITHM

IN [16] FOR GAUSSIAN WHITE NOISE RESIDUAL.

Index Song NI
α-stable
noise

Gaussian
white noise

1 Kalonixtia 15.2 49.2
2 Kastoriano syrto 15.3 45.1
3 To endika skropio 16.2 47.7
4 Paulos Milas 16.0 49.5
5 Sirto tou Panagioth 16.5 47.8
6 Kobo mia glara 15.3 47.1
7 Loukas 16.7 53.2
8 Mana mou ta louloudia sou 15.5 47.7

As can be seen in Table I, the assumption for an α-
stable noise residual in (15) and the modifications due to this
assumption in the framework proposed in [16] yields better
denoising than for the assumption of a Gaussian white-noise
residual. Furthermore, this fact can be verified by listening to
the denoised musical excerpts2. When a Gaussian white noise
residual is assumed, the processed audio files still contain a
considerable amount of the background environmental noise.
When an α-stable noise residual is assumed, the recordings
are free from the background environmental noise, but they
contain some new artifacts. In Fig. 2, the significance maps
are depicted, when Greek folk song 2 (Kastoriano syrto) is
processed by the proposed algorithm that resorts to α-stable
noise residual (a1-a2) and the algorithm in [16] that resorts to
a Gaussian noise residual (b1-b2). The significance maps show
the MMSE values of the indicator variables g1 and g2 of noise
corruption for the tonals and the transients, respectively. The
values range from 0 (white) to 1 (black). By comparing Fig.
2(a1) and Fig. 2(b1), it is seen that the proposed variant for the
tonal layer yields similar results with the original algorithm
in [16]. However, the performance of the two algorithms
significantly differs for the transient layer. Indeed, the transient
layer contains more artifacts, when a Gaussian noise residual
is assumed as can be seen in Fig. 2(b2) than when an α-
stable noise residual is assumed in the proposed variant of the
algorithm in [16] (Fig. 2(a2)). The waveforms of the noisy and
the filtered audio signal are plotted in Fig. 3.

The MCMC inference for the α−stable parameters is
shown in Fig. 4, where the values of the characteristic exponent
α, the squared scale parameter γ2, and the estimated standard
deviation

√
ρiγ of the α−stable noise residual are depicted

for each iteration of the Gibbs sampler. The MMSE estimates
obtained by averaging the parameters in the last 100 iterations
are: α ≃ 0.78, γ2 ≃ 0.01, and

√
ρiγ ≃ 2. Similarly, the

MCMC inference for the remaining parameters of the signal
model within the α−stable noise is depicted in Fig. 5, where
the Markov transition probabilities for the tonals and the
transients (P1,00, P1,11), the gain parameter for the tonals and
the transients (η1, η2), and the Markov initial probabilities
for the transients (π2) are plotted versus sampler iterations.
The plots for the parameter values of the signal model in the
original algorithm in [16] do not differ significantly from the
plots shown in Fig. 5 with the exception of π2 that converges
slower when a Gaussian noise residual is assumed (Fig. 6) than
when an α−stable noise residual is considered (Fig. 5c).

All the aforementioned experiments were run on a Mac
with a Core 2 Duo processor running at 2.4 GHz having 4 Gb

2Sample sound files are available at
https://www.dropbox.com/sh/23iy9v52lbdl072/o32Znsm9oL
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Fig. 2. Significance maps of the selected coefficients in Φ1 and Φ2 bases for
the musical excerpt from Greek song 2 (Kastoriano syrto). The maps show
the MMSE estimates of the noise indicator variables g1 and g2 when: (a1)-
(a2) α−stable noise residual and (b1)-(b2) Gaussian white noise residual is
assumed in (15). The values range from 0 (white) to 1 (black).
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Fig. 3. Waveforms of the noisy and the estimated clean signal for the audio
file 2 (Kastoriano syrto).
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Fig. 4. Sampled values of the α-stable parameters: characteristic exponent
α, square of scale parameter γ2, and the standard deviation of the α-stable
noise

√
ρiγ.

RAM. On average, it took 314 min for the signal model with
α-stable noise residual and 75 min for the signal model with
Gaussian white noise residual to process a 24s long excerpt.
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Fig. 5. Sampled values of (a) P1,00, P1,11, (b) P2,00, P2,11, (c) π2, and
(d) η1, η2 when an α−stable noise is assumed.
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Fig. 6. Sampled values of π2 when a Gaussian white noise is assumed.

The additional effort is due to the estimation of the α-stable
parameters, with the estimation of ρi being the most time
consuming.

VI. CONCLUSION

A musical audio denoising technique has been studied
where the music signal is modeled in the frequency domain
by two MDCT bases having indicator variables with structured
priors and the residual noise is modeled by means of an α-
stable distribution. The technique is formulated in a Bayesian
setting and MCMC inference is used to estimate all the neces-
sary model parameters. Preliminary results on musical excerpts
from raw Greek folk songs recorded in outdoor festivities
demonstrate that the α-stable noise assumption within the
framework proposed in [16] is more suitable than the Gaussian
white noise one. Testing the proposed technique in longer
musical excerpts and examining the effect of model parameter
initialization in more detail could be topics of future research.
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