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Abstract—Speech signals convey information not only for the
speakers’ identity and the spoken language, but also for the
acquisition devices used during their recording. Therefore, it is
reasonable to perform acquisition device identification by analyz-
ing the recorded speech signal. To this end, the random spectral
features (RSFs) and the labeled spectral features (LSFs) are pro-
posed as intrinsic fingerprints suitable for device identification.
The RSFs and the LSFs are extracted by applying unsupervised
and supervised feature selection to the mean spectrogram of
each speech signal, respectively. State-of-the-art identification
accuracy of 97.58% has been obtained by employing LSFs on a
set of 8 telephone handsets, from Lincoln-Labs Handset Database
(LLHDB).

I. INTRODUCTION

Speech is the most natural way to communicate between

humans. Nowadays, speech communication systems acquire

transmit, store, and process the information in digital form.

However, the digital speech content can be imperceptibly

altered by malicious, even amateur, users who may employ

a variety of low-cost audio editing software. This creates a

serious threat to the knowledge life cycle. Indeed, when hearing

is no longer believing, the process of going from data to

information, knowledge, understanding and, decision making

is severely compromised [1]. The consequences of this threat

permeate a wide variety of fields, such as intellectual property,

intelligence gathering, forensics, and news reporting to name

a few. Currently, theories and tools to combat this threat in

the field of digital speech forensics are still in their infancy.

Moreover, there is an urgent need to advance the state-of-the-

art in this field [2].

A first step to remedy the aforementioned threat is to

extract forensic evidence about the mechanism involved in

the generation of the speech recording by analyzing only the

speech signal [2]. That is, to identify the acquisition device

by assuming that the acquisition devices along with their

associated signal processing chain leave behind intrinsic traces

in the speech signal. Indeed, the electronic devices, especially

when include a microphone, cannot have exactly the same

frequency response due to tolerances in the production of the

electronic components and the different designs employed by
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the various manufacturers [3]. This implies that the recorded

speech can be considered as a signal whose spectrum is

the product of the genuine speech spectrum, driving the

acquisition device, and the frequency response of the latter.

Consequently, the recorded speech signal can be exploited in

device identification, following a blind-passive approach as

opposed to active embedding of watermarks or having access

to input-output pairs [2].

Although there are significant advances in image forensics

[1], audio forensics are less developed [4]. Few exceptions

include the authentication of MP3 [5] and the authentication of

speakers’ environment [6], [7], [8]. Similarly, a few automatic

acquisition device identification systems have been developed.

For instance, a method for the classification of 4 microphones

has been proposed in [7]. The speech signal is parameterized

by employing time domain features and the mel-frequency

cepstral coefficients (MFCCs). The identification of the mi-

crophones is performed by a Naive Bayes classifier at a short-

time frame level. Accuracies on the order of 60-75% have

been reported. In [2], the identification of 8 landline tele-

phone handsets and 8 microphones is addressed. In particular,

the intrinsic characteristics of the device are captured by a

template constructed by appending together the means of a

Gaussian mixture trained on the speech recordings of each

device. To this end, linear- and mel-scaled cepstral coefficients

were employed for speech signal representation. Classifica-

tion accuracies higher than 90% have been achieved, when

a support vector machine (SVM) classifier was employed.

Recently, a robust system for the identification of cell-phones

has been proposed in [3]. In particular, when the MFCCs

extracted from device speech recordings are classified by an

SVM, 14 different cell-phones are identified with an accuracy

of 96.42%.

In this paper, a novel blind-passive method for landline

telephone handset identification is proposed. The method

resorts on suitable feature extraction from speech recordings

along with feature selection and their sparse representation,

enabling to trace the recording device. In particular, two

feature selection procedures, one unsupervised and another one

supervised, are proposed in order to obtain intrinsic features

for tracing the recording device. Given a speech recording,

its spectrogram is computed and it is averaged along the

time axis, yielding the mean spectrogram. For unsupervised
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feature selection, the dimensionality of the mean spectrogram

is reduced by random projections [9] yielding the random

spectral features (RSFs) of speech recording. In the supervised

setting, the label information (i.e., the class where each device

belongs to) of the training speech recordings is taken into

account in order to derive a mapping between the feature space

where the mean spectrograms lie onto and the label space. Let

the training acquisition devices belong to K different device

classes with labels K = {1, 2, . . . ,K}. Clearly, the label

space has as many dimensions as the device classes are. The

mapping between the aforementioned two spaces is obtained

by solving a regression problem. This mapping can also be

exploited in order to map the test mean spectrogram onto

the K-dimensional space, which is dominated by the label

information. These features are referred to as labeled spectral

features (LSFs).

The RSFs and LSFs can be used to form overcomplete dic-

tionaries of basis signals for devices’ intrinsic traces, which is

exploited for sparse representation-based classification (SRC)

[10]. If sufficient training speech recordings are available for

each device, it is possible to express any vector of RSFs or

LSFs extracted from an unknown (test) device as a compact

linear combination of the dictionary atoms for the device

actually used for its recording. This representation is designed

to be sparse, because it involves only a small fraction of the

dictionary atoms and can be computed efficiently via ℓ1-norm

optimization. The classification is performed by assigning

each vector of test RSFs or LSFs the device identity (ID)

the dictionary atoms weighted by non-zero coefficients are

associated with.

The performance of the proposed method in the identi-

fication of 8 telephone handsets is assessed by conducting

experiments on the Lincoln-Labs Handset Database (LLHDB)

[11] when a stratified 2-fold cross-validation is applied. For

comparison purposes, the mean 23-dimensional MFCC vector

of each speech recording is considered as a baseline feature for

device characterization. Performance comparisons are made

against the linear SVM [12] and the nearest-neighbor (NN)

classifier, which employs the cosine similarity measure.

The experimental results demonstrate the effectiveness of

the proposed RSFs and LSFs over the MFCCs as device fin-

gerprints, no matter which classifier is employed. Meanwhile,

the LSFs are able to achieve an accuracy of 97.58% in device

identification, outperforming the state-of-the-art method [2] on

the LLHDB dataset.

The paper is organized as follows. In Section 2, the RSFs

and the LSFs are introduced and the calculation of the MFCCs

is described. The sparse representation-based device identifica-

tion is detailed in Section 3. The dataset and the experimental

results are presented in Section 4. Conclusions are drawn in

Section 5.

II. INTRINSIC DEVICE FINGERPRINT EXTRACTION BY

SPECTRAL AND CEPSTRAL FEATURES

The majority of features employed in tasks, such as speech

and speaker recognition, spoken language identification, etc.

are based on the spectrum of the speech signal. Assuming

that the acquisition device is a linear time-invariant system,

the impact of the acquisition device on the recorded speech

can be modeled by the convolution of the original speech and

the impulse response of the device. Thus, the identity of each

acquisition device is embedded into the recorded speech, since

the spectrum of any windowed recorded speech segment is the

product of the spectrum of the original speech signal and the

device frequency response.

Motivated by the aforementioned assumption, the RSFs and

the LSFs are proposed here as intrinsic traces of recording

devices. These features are derived by applying unsupervised

and supervised feature selection to the mean spectrograms of

the recordings, respectively. The spectrogram of each recorded

speech signal is calculated by employing frames of duration

64 ms with a hop size of 32 ms and 2048 FFT bins. Then, the

logarithm of the spectrogram is calculated and averaged along

the time axis, yielding a 2048-dimensional mean spectrogram.

The RSFs are obtained as follows. The dimensionality of

the mean spectrogram is reduced to d < 2048 by employing

a d× 2048 orthogonal random Gaussian matrix, as described

in [9]. Clearly, random projections can be interpreted as an

unsupervised feature selection method, since a number d out of

2048 features is selected for acquisition device representation.

Let X ∈ R
d×N be the data matrix that contains N vectors of

RSFs of size d in its columns. The entries of X are further

post-processed as follows: Each row of X is normalized to the

range [0, 1] by subtracting from each matrix element the row

minimum and then by dividing it with the difference between

the row maximum and the row minimum.

In order to extract discriminant features from the mean

spectrograms the label information of the devices that belong

to the training set is taken into account. In particular, we aim to

derive features that are highly dependent on the labels. Clearly,

the label space is spanned by the columns of the matrix

L ∈ {0, 1}K×N , where the kth component of the nth column

of L, ln, is 1 if the nth device belongs to class k ∈ K. Let

Xt ∈ R
2048×Nt be the training data matrix, containing in its

columns the 2048-dimensional mean spectrograms extracted

from, Nt speech signals recorded by using acquisition devices

from K classes. Let also Lt ∈ {0, 1}K×Nt be the submatrix

of L that is limited to the training samples. Features highly

dependent on the labels can be obtained by seeking a linear

mapping M ∈ R
K×2048 such that the space of the training

mean spectrograms is mapped onto the label space, i.e.,

Lt = M Xt. The aforementioned problem can be casted

as a regression problem, since it involves the identification

of the relationship between sets of dependent variables and

independent ones. Although, a simple least squares regression

could be employed to derive M, it is well known that such an

approach suffers from overfitting. To remedy this drawback

of the least squares regression, M is found by solving the

following ridge regression problem:

argmin
M

‖Lt −M Xt‖
2

F + λ‖M‖2F , (1)
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where λ is a regularization parameter (e.g., the value λ = 0.5
was used in the experiments) and ‖.‖F denotes the Frobenius

norm. The unique closed form solution of (1) is

M = LtX
T
t

(

XtX
T
t + λI

)−1

. (2)

I denotes the identity matrix of compatible dimensions. In the

test phase, by premultiplying any mean spectrogram by M,

the K-dimensional vector of the LSFs is obtained.

The MFCCs are considered as baseline features [2]. They

encode the frequency content of the speech signal by parame-

terizing the rough shape of spectral envelope. The success of

the MFCCs in device identification is justified in [3]. Roughly

speaking, the logarithm which involved in the calculation of

the MFCCs is a nonlinear transformation with additive prop-

erty in the spectrum magnitude domain and thus the cepstral

features can be consider as a superposition of latent variables,

which are related to the recording device, and variables which,

are related to the speech content. Following [2], the MFCC

calculation employs frames of duration 20 ms with a hop

size of 10 ms, and a 42-band filter bank. The correlation

between the frequency bands is reduced by applying the

discrete cosine transform along the log-energies of the bands.

The sequence of 23-dimensional MFCCs is averaged along the

time axis yielding a 23-dimensional mean vector. The data

matrix containing the MFCCs is postprocessed as described

previously for the RSFs.

In Figs. 1 and 2, the mean spectrograms and the MFCCs are

depicted, for the same speech utterance recorded by 8 different

telephone handsets, respectively. Clearly, both the mean spec-

trograms and the MFCCs convey discriminant information for

the recording device.

III. ACQUISITION DEVICE IDENTIFICATION VIA SPARSE

REPRESENTATION

The problem of revealing the device identity of a vector

of RSFs or LSFs, given a number of labeled RSFs or LSFs,

respectively, from N acquisition devices is addressed based

on the SRC [10]. In the following, when LSFs are employed,

d = K.

Let us denote by Ai = [ai,1|ai,2| . . . |ai,ni
] ∈ R

d×ni the

dictionary that contains ni either RSFs or LSFs stemming from

the ith device as column vectors (i.e., dictionary atoms). Given

a vector of test RSFs (or LSFs) y ∈ R
d that comes from the

ith device, we can assume that y is expressed as a linear

combination of the atoms that are associated to the ith device,

i.e.,

y =

ni
∑

j=1

ai,j ci,j = Ai ci (3)

where ci,j ∈ R are coefficients, which form the coefficient

vector ci = [ci,1, ci,2, . . . , ci,ni
]T .

Next, let A = [A1|A2| . . . |AN ] ∈ R
d×n be an overcom-

plete dictionary formed by concatenating n RSFs (or LSFs),

which stem from N acquisition devices. Thus, the linear

representation of y ∈ R
d in (3) can be equivalently rewritten

as

y = A c (4)

where c = [0T | . . . |0T |cTi |0
T | . . . |0T ]T is the n × 1 aug-

mented coefficient vector, whose elements are zero except

those associated with the ith device. Thus, the entries of c

contain information about the device the test vector of RSFs

(or LSFs) y ∈ R
d comes from.

Since the device ID of a test vector of RSFs (or LSFs) is

unknown, we can predict it by seeking the sparsest solution

to the linear system of equations y = A c. Formally, given

the overcomplete dictionary A and the vector of test RSFs

or (LSFs) y ∈ R
d, the problem of sparse representation is to

find the coefficient vector c, such that y = A c and ‖c‖0 is

minimized, i.e.,

c∗ = argmin
c

‖c‖0 subject to Ac = y (5)

where ‖.‖0 is the ℓ0 quasi-norm returning the number of

the non-zero entries of a vector. Finding the solution of the

optimization problem (5) is NP-hard due to the nature of

the underlying combinational optimization. An approximate

solution to the problem (5) can be obtained by replacing the

ℓ0 norm with the ℓ1 norm:

c∗ = argmin
c

‖c‖1 subject to A c = y (6)

where ‖.‖1 denotes the ℓ1 norm of a vector. In [13], it has been

proved that if the solution is sparse enough, then the solution of

(5) is equivalent to the solution of (6), which can be obtained

by standard linear programming methods in polynomial time.

A test vector of RSFs (or LSFs) can be classified as follows.

The coefficient vector c∗ is obtained by solving (6). Ideally,

c∗ contains non-zero entries in positions associated with the

dictionary atoms (i.e., columns of A) stemming from a single

device, so that we can easily assign the vector of test RSFs

(or LSFs) y to that device. However, due to modeling errors,

there are small non-zero entries in c∗ that are associated

to multiple devices. To cope with this problem, each RSF

(or LSF) is classified to the device class that minimizes

the residual ri(y) = ‖y − A δi(c)‖2, where δi(c) ∈ R
n

is a new vector, whose nonzero entries are associated to

the ith device only [10]. It is worth mentioning that, the

SRC avoids under-fitting, since it employs multiple training

samples (instead of the nearest one in the case of the NN)

for each class to linearly extrapolate the test sample, but it

uses only the smallest necessary number of them to avoid

over-fitting. Furthermore, for each test sample, the number of

samples needed is automatically determined, since under mild

assumptions the ℓ1 norm minimization is equivalent to the

ℓ0 norm minimization [13]. As a result, the SRC can better

exploit the actual distributions of the training samples of each

class and and therefore it is likely to be more discriminant

than other classifiers.

In Fig. 3 (a), the sparse representation coefficients c for a

test vector of RSFs y extracted from a carbon-button telephone
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Fig. 1. Mean spectrograms of a speech utterance recorded by 8 different telephone handsets in LLHDB.

Fig. 2. 23-dimensional mean MFCCs of a speech utterance recorded by 8 different telephone handsets in LLHDB.

Fig. 3. The test vector of RSFs y has been extracted by a carbon-button telephone handset with the ID: CB1. (a) The values of the sparse coefficients c.
The non-zero entries of c are mainly associated with RSFs extracted from speech utterances recorded with the CB1. (b) The residuals ri(y) of the RSFs.
The smallest residual value reveals the identity of the telephone handset (i.e., CB1).

handset with the ID CB1 are illustrated. Fig. 3 (b) shows the residual ri(y) with respect to 8 telephone handset IDs.
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TABLE I
BEST TELEPHONE HANDSET IDENTIFICATION ACCURACIES ACHIEVED BY THE RSFS, THE LSFS, AND THE MFCCS, WHEN THE SRC, THE LINEAR SVM,

AND THE NN ARE EMPLOYED.

Features Feature dimension Classifier Accuracy (%)

RSFs 325 SRC 95.55
RSFs 625 SVM 94.81
RSFs 475 NN 88.23

LSFs 8 SRC 97.14

LSFs 8 SVM 97.58

LSFs 8 NN 96.52

MFCCs 23 SRC 89.79
MFCCs 23 SVM 87.35
MFCCs 23 NN 81.95

MFCCs- based Gaussian supervector [2] N/A SVM 93.20

IV. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed method

in acquisition device identification, experiments were con-

ducted on the same subset of the Lincoln-Labs Handset

Database (LLHDB) [11] as in [2]. This subset consists of

speech recordings from 53 speakers (24 males and 29 fe-

males) acquired by 8 landline telephone handsets. The first

4 telephone handsets are are carbon-button (CB1-CB4) and

the remaining 4 are electrect (EL1-EL4). Following the ex-

perimental set-up used in [2], stratified 2-fold cross-validation

is employed in the experiments conducted on the LLHDB.

The best identification accuracies are summarized in Table I,

when the RSFs, the LSFs, and the MFCCs are classified by the

SRC [10], the linear SVM [12], and the NN with the cosine

similarity measure. By inspecting Table I, it is clear that the

RSFs and the LSFs are able to identify the acquisition device

committing less errors than the MFFCs, no matter which

classifier is employed. Moreover, the LSFs achieve state-of-

the-art identification accuracy if they are fed to either the

SVM, or the NN, or the SRC classifier. The SVM achieves

the best reported identification accuracy (i.e., 97.58%) on the

LLHDB.

The performance of the RSFs in telephone handset identifi-

cation as a function of features dimension (i.e., d) is depicted

in Fig. 4. It is clear that for d > 200 the SRC outperforms the

state-of-the-art reported in [2], demonstrating the robustness

of the proposed approach in acquisition device identification.

The accurate telephone handset identification by the RSFs and

their sparse representations is attributed to the following fact.

It is well known that by projecting the data onto an orthogonal

random Gaussian matrix, the dictionary A obeys the restricted

isometry property (RIP) of a certain, appropriate order (say S)

[14]. When this property holds, A approximately preserves

the Euclidean length of S-sparse RSFs, which in turn implies

that S-sparse vectors cannot be in the null space of A. The

latter is needed, since otherwise there would be no hope for

reconstructing these vectors. Clearly, it cannot be guaranteed

that the RIP holds for the dictionary constructed by employing

the MFCCs as atoms.

The LSFs outperforms both the RSFs and the MFCCs,

since they are obtained following a supervised feature selection

process. Insight to the performance achieved by LSFs when

the SRC, the SVM, and the NN classifier is employed is

offered by the confusion matrices shown in Fig. 5, Fig. 6,

and Fig. 7, respectively. The rows of the confusion matrices

correspond to the predicted device and the columns indicate

the actual device. The gray shading in these Figures highlights

the fact that most of the identification errors remain within the

transducer class (i.e., carbon-button and electrect). The carbon-

button telephone handsets are identified more accurately than

the electrect ones. This result is attributed to the fact that the

transfer functions between the various carbon-button telephone

handsets are quite different. Similar results were reported in

[2].
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Fig. 4. Telephone handsets identification accuracy for the RSFs obtained by
the SRC, the SVM, and the NN on the LLHDB.

V. CONCLUSIONS

A promising method for telephone handset identification

from speech signals has been proposed. The RSFs and the

LSFs have been demonstrated to capture the intrinsic trace

of the acquisition device, while the sparse representation-

based classification has been shown to be able to identify

the acquisition device. The experimental results validate the

robustness of the RSFs and the LSFs over the MFCCs for
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Fig. 5. Confusion matrix for 8 telephone handsets based on the LSFs, when
they are classified by the SRC.

Fig. 6. Confusion matrix for 8 telephone handsets based on the LSFs, when
they are classified by the SVM.

device characterization, yielding a state-of-the-art performance

in recognizing 8 telephone handsets from the LLHDB.
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