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ABSTRACT

A novel unsupervised method for automatic music struc-
ture analysis is proposed. Three types of audio features,
namely the mel-frequency cepstral coefficients, the chroma
features, and the auditory temporal modulations are em-
ployed in order to form beat-synchronous feature sequences
modeling the audio signal. Assume that the feature vec-
tors from each segment lie in a subspace and the song as a
whole occupies the union of several subspaces. Then any
feature vector can be represented as a linear combination
of the feature vectors stemming from the same subspace.
The coefficients of such a linear combination are found by
solving an appropriate ridge regression problem, resulting
to the ridge representation (RR) of the audio features. The
RR yields an affinity matrix with nonzero within-subspace
affinities and zero between-subspace ones, revealing the
structure of the music recording. The segmentation of the
feature sequence into music segments is found by applying
the normalized cuts algorithm to the RR-based affinity ma-
trix. In the same context, the combination of multiple au-
dio features is investigated as well. The proposed method
is referred to as ridge regression-based music structure anal-
ysis (RRMSA). State-of-the-art performance is reported for
the RRMSA by conducting experiments on the manually
annotated Beatles benchmark dataset.

1. INTRODUCTION

The structural description of a music piece at the time scale
of segments, such as intro, verse, chorus, bridge, etc. is re-
ferred to as the musical form of the piece [15]. Its deriva-
tion from the audio signal is a core task in music thumb-
nailing and summarization, chord transcription [10], learn-
ing of music semantics and music annotation [1], song seg-
ment retrieval [1], or remixing [6].

Human listeners analyze and segment music into mean-
ingful parts by detecting the structural boundaries between
the segments thanks to the perceived changes in timbre,
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tonality, and rhythm over the music piece. Music struc-
ture analysis extracts low-level feature sequences from the
audio signal in order to model the timbral, melodic, and
rhythmic content [15]. The segmentation of the feature
sequences into structural parts is performed by employ-
ing methods based on either repetition, homogeneity, or
novelty [1, 6, 7, 12, 14, 15, 17] to analyze a recurrence plot
or a self-similarity distance matrix. For a comprehensive
review on automatic music structure analysis systems the
interested reader is referred to [4, 15] (and the references
therein).

In this paper, a novel method for music structure anal-
ysis is proposed, which differs significantly from the pre-
vious methods. In particular, three types of audio features,
namely the mel-frequency cepstral coefficients (MFCCs),
the Chroma features, and the auditory temporal modula-
tions (ATMs) are employed in order to form beat-synchro-
nous feature sequences modeling the timbral, tonal, and
rhythmic content of the music signal. It is reasonable to
assume that due to the timbral, tonal, and rhythmic ho-
mogeneity within the music segments, the audio features
extracted from a specific music segment are highly cor-
related and thus linearly dependent. Therefore, there is
a linear subspace that spans the beat-synchronous audio
features for each specific music segment implying that the
sequence of feature vectors extracted from the whole mu-
sic recording will lie in a union of as many linear sub-
spaces as the music segments of this recording are. Ac-
cordingly, a feature vector extracted at the time scale of
a beat can be represented as a linear combination of the
feature vectors stemming from the subspace it belongs to.
Formally, one solves an appropriate inverse problem in or-
der to obtain the representation of each feature vector with
respect to a dictionary, which is constructed by all the other
feature vectors as atoms (i.e., column vectors). Here, it
is proved that the joint ridge representation (RR) of the
features drawn from a union of independent linear sub-
spaces exhibits nonzero within-subspace affinities and zero
between-subspace affinities. That is, a ridge regression 1

problem is solved, which admits a unique and closed-form
solution. The segmentation of the feature sequence into
music segments is revealed by applying the normalized
cuts spectral clustering algorithm [16] to the RR-based affin-

1 Ridge regression is also known as Tikhonov regularization.



Figure 1. Each music recording is modeled by three audio features, namely the MFCCs, the Chroma features, and the
ATMs resulting to three beat-synchronous feature matrices. The RR is derived for each feature matrix and three affinity
matrices are obtained as described in Section 3. A cross-feature affinity matrix is obtained by linearly combining the affinity
matrices obtained for the individual features. The segmentation of the music recording into music segments is obtained by
applying the normalized cuts spectral clustering algorithm to the cross-feature RR-based affinity matrix.

ity matrix. Provided that music segments can seldom be
revealed efficiently by resorting to a single feature, multi-
ple features are extracted from each music recording and
the cross-feature information is utilized in order to obtain
a reliable music segmentation. To this end, a cross-feature
RR-based affinity matrix is constructed by linearly com-
bining the RR-based affinity matrices obtained for each
individual feature. Again, the segmentation of the fea-
ture sequence into music segments is obtained by applying
the normalized cuts to the cross-feature RR-based affin-
ity matrix. The proposed method is referred to as ridge
regression-based music structure analysis (RRMSA) and
it is outlined in Fig. 1.

The performance of the RRMSA is assessed by con-
ducting experiments on the manually annotated Beatles da-
taset. The RRMSA is demonstrated to yield a state-of-the-
art performance.

The remainder of the paper is as follows. In Section 2,
the audio features employed are briefly described. The
RRMSA is detailed in Section 3. Dataset, evaluation met-
rics, and experimental results are presented in Section 4.
Conclusions are drawn in Section 5.

2. AUDIO FEATURE REPRESENTATION

The variations between different music segments are cap-
tured by extracting three audio features from each monau-
ral music recording sampled at 22.05-kHz. In particular,
the MFCCs, the Chroma features, and the ATMs are em-
ployed.

1) The MFCCs encode the timbral properties of the mu-
sic signal by parameterizing the rough shape of spectral
envelope. Following [14], the MFCC calculation employs
frames of duration 92.9 ms with a hop size of 46.45 ms

and a 42-band filter bank. The correlation between the fre-
quency bands is reduced by applying the discrete cosine
transform along the log-energies of the bands. The zeroth
order coefficient is discarded yielding a sequence of 12-
dimensional MFCCs vectors.

2) The Chroma features are able to characterize the har-
monic content of the music signal by projecting the entire
spectrum onto 12 bins representing the 12 distinct semi-
tones (or chroma) of a musical octave. They are calculated
by employing 92.9 ms frames with a hope size of 23.22
ms as follows. First, the salience of different fundamental
frequencies in the range 80 − 640 Hz is calculated. The
linear frequency scale is transformed into a musical one by
selecting the maximum salience value in each frequency
range corresponding to one semitone. Finally, the octave
equivalence classes are summed over the whole pitch range
to yield a sequence of 12-dimensional chroma vectors.

3) The ATMs carry important time-varying information
of the audio signal [11]. They are obtained by modeling the
path of human auditory processing as a two-stage process.
In the first stage, which models the early auditory system,
the acoustic signal is converted into a time-frequency dis-
tribution along a logarithmic frequency axis, the so-called
auditory spectrogram. The early auditory system is mod-
eled by Lyons’ passive ear model [9] employing 96 fre-
quency channels ranging from 62 Hz to 11 kHz. The au-
ditory spectrogram is then downsampled along the time
axis in order to obtain 10 feature vectors between two suc-
cessive beats. The underlying temporal modulations of
the music signal are derived by applying a biorthogonal
wavelet filter along each temporal row of the auditory spec-
trogram, where its mean has been previously subtracted,
for 8 discrete rates r ∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz
ranging from slow to fast temporal rates. Thus, the entire



auditory spectrogram is modeled by a three-dimensional
representation of frequency, rate, and time which is then
unfolded 2 along the time-mode in order to obtain a se-
quence of 96× 8 = 728-dimensional ATMs.

Postprocessing. Sequences of beat-synchronous feature
vectors are obtained by averaging the feature vectors over
the beat frames. The latter are found by using the beat
tracking algorithm described in [5]. Each row of the beat-
synchronous feature matrix is filtered by applying an aver-
age filter of length 8. Finally, each feature vector under-
goes a normalization in order to have zero-mean and unit
ℓ2 norm.

3. MUSIC STRUCTURE ANALYSIS BASED ON
RIDGE REGRESSION

In this section, the RRMSA is detailed. Let a given mu-
sic recording of K music segments be represented by a
sequence of N beat-synchronous audio feature vectors of
size d, i.e., X = [x1|x2| . . . |xN ] ∈ Rd×N . The per-
ceived timbral, tonal, and rhythmic homogeneity within
a music segment implies that the audio features extracted
from this music segment are highly correlated, exhibiting
linear dependence. This motivated us to assume that beat-
synchronous feature vectors belonging to the same mu-
sic segment live into the same subspace. Therefore, if
a music recording consists of K music segments, the se-
quence of N beat-synchronous audio feature vectors (i.e.,
the columns of X) are drawn from a union of K indepen-
dent linear subspaces of unknown dimensions. Thus, each
feature vector can be represented as a linear combination
of feature vectors drawn from the same subspace. That is,
X = XZ, where Z ∈ RN×N is the representation matrix,
which contains the linear combination coefficients in its
columns 3 . Clearly, zij = 0, if xi and xj lie on different
subspaces and nonzero otherwise.

Such a representation matrix Z can be found by solving
a least-squares problem regularized by the Frobenius norm
(denoted by ∥.∥F ), the so-called ridge regression problem:

argmin
Z

∥X−XZ∥2F + λ∥Z∥2F . (1)

The unique solution of the unconstrained convex problem
(1) is referred to as ridge representation (RR) matrix and it
is given in closed-form by:

Z = (XTX+ λI)−1XTX. (2)

Technically, the desired property of the RR matrix to ad-
mit nonzero entries for within-subspace affinities and zero
entries for between-subspace affinities is enforced by the
regularization term λ∥Z∥2F in (1) as proved in Theorem 1,
which is a consequence of Lemma 1. This result indicates
that if the data follow subspace structures (i.e., come from

2 The tensor unfolding can be implemented in Matlab by em-
ploying the tenmat function of the MATLAB Tensor Tool-
box available at: http://csmr.ca.sandia.gov/˜tgkolda/
TensorToolbox/.

3 Due to the assumptions stated at the beginning of Section 3, the ma-
trix X does not has full column rank. Therefore, X = XZ does not
admit the identity matrix as solution.

a union of independent subspaces), the correct identifica-
tion of the subspaces can be obtained accurately, fast, and
in closed form by solving (1) without imposing sparsity or
other constraints on the data model.

Lemma 1 [2]. For any four matrices B,C,D, and F of
compatible dimensions,

∥∥∥∥[ B C
D F

]∥∥∥∥2
F

≥
∥∥∥∥[ B 0

0 F

]∥∥∥∥2
F

= ∥B∥2F + ∥F∥2F .

(3)
Theorem 1. Assume the columns of X (i.e., the fea-

ture vectors) are drawn from a union of K linear indepen-
dent subspaces of unknown dimensions. Without loss of
generality, one may decompose X as [X1|X2| . . . |XK ] ∈
Rd×N , where the columns of Xk ∈ Rd×Nk , k = 1, 2, . . . ,K
correspond to the Nk feature vectors originating from the
kth subspace. The minimizer of (1) is block-diagonal.
The proof can be found in the Appendix.

Let Z = UΣVT be the singular value decomposition
(SVD) of Z. Set Ũ = U(Σ)

1
2 and M = ŨŨT . A RR-

based nonnegative symmetric affinity matrix W ∈ RN×N
+

has elements [8]:

wij = m2
ij . (4)

The segmentation of the columns of X into K clusters (i.e.,
music segments) is performed by employing the normal-
ized cuts [16] onto the RR-based affinity matrix W.

Since the music segments cannot be accurately derived
by resorting to one feature, cross-feature information is ex-
pected to produce a more reliable music segmentation. Let
Wm, Wc, and Wa be the RR-based affinity matrix ob-
tained, when the MFCCs, the Chroma, and the ATMs are
employed, respectively. A cross-feature RR-based affinity
matrix Wcf ∈ RN×N

+ can be constructed by:

Wcf = 1/3(Wm +Wc +Wa), (5)

or any other combination of the individual affinity matri-
ces. The segmentation of the music recording can be ob-
tained by applying the normalized cuts [16] to the cross-
feature RR-based affinity matrix Wcf .

In general, the number of segments K in a music record-
ing is unknown and thus it is reasonable to be estimated. To
this end, the soft-thresholding approach is employed [8].
That is, the estimated number of segments K̄ is found by:

K̄ = N − int(
N∑
i=1

fτ (σi)). (6)

The function int(.) returns the nearest integer of a real num-
ber, {σi}Ni=1 denotes the set of the singular values of the
Laplacian matrix derived by the corresponding affinity ma-
trix, and fτ is the soft-thresholding operator defined as
fτ (σ) = 1 if σ ≥ τ and log2(1 +

σ2

τ2 ), otherwise. Clearly,
the threshold τ ∈ (0, 1).



4. EXPERIMENTAL EVALUATION

4.1 Dataset, Evaluation Procedure, and Evaluation
Metrics

Beatles dataset 4 : The dataset consists of 180 songs by
The Beatles. The songs are annotated by the musicol-
ogist Alan W. Pollack. Segmentation time stamps were
inserted at Universitat Pompeu Fabra (UPF). Each music
recording contains on average 10 segments from 5 unique
classes [17].

The structure segmentation is obtained by applying the
RRMSA to each individual feature sequence as well as to
all possible feature combinations. In Fig. 2, sample RR-
based affinity matrices are depicted. Two sets of experi-
ments were conducted on the Beatles dataset. First, follow-
ing the experimental setup employed in [1,3,6,7,12,14,17],
the number of clusters (i.e., segments) K was kept constant
and equal to 4. Second, for each music recording, the num-
ber of segments was estimated by (6). The optimal values
of the various parameters (i.e., λ, τ ) were determined by a
grid search over 10 randomly selected music recordings of
the dataset.

In order to compare fairly the RRMSA with the state-
of-the-art music structure analysis methods, the segment
labels are evaluated by employing the pairwise F -measure
as in [3,6,7,12,14,17]. The pairwise F -measure is a stan-
dard evaluation metric for clustering algorithms. It is de-
fined as the harmonic mean of the pairwise precision and
recall. The segmentation results and the reference segmen-
tation (i.e., the ground truth) are handled at the time scale
of beats. Let FA be the set of identically labeled pairs of
beats in a recording according to the music structure analy-
sis algorithm and FH be the set of identically labeled pairs
in the human reference segmentation. The pairwise pre-
cision, PP , the pairwise recall, PR, and the pairwise F -
measure, PF , are defined as:

PP =
|FA ∩ FH |

|FA|
, (7)

PR =
|FA ∩ FH |

|FH |
, (8)

PF = 2 · PP · PR

PP + PR
, (9)

where |.| denotes the set cardinality.

4.2 Experimental Results

The segment-type labeling performance of the RRMSA on
the Beatles dataset is summarized in Table 1 for a fixed
number of segments (i.e., K = 4) as in [3, 6, 7, 12, 14,
17]. By inspecting Table 1, one can see that the ATMs are
more suitable for music structure analysis than the MFCCs
and the Chroma features. Furthermore, the latter two fea-
tures lead to an undesirable over-segmentation of the mu-
sic recordings. Similar findings were reported in [12]. The
best result reported for segment-type labeling on the Bea-
tles dataset is obtained here, when the RR-based affinity

4 http://www.dtic.upf.edu/ perfe/annotations/sections/license.html

matrices of the MFCCs and the ATMs are combined. In-
terestingly to note that by employing cross-feature affinity
matrices the average number of segments approaches 10
(i.e., the actual average number of segments according to
the ground-truth), although no constraints have been en-
forced during clustering. In addition to the very promising
performance of the RRMSA with respect to PF , it is worth
mentioning that the RRMSA is fast. The average CPU time
for the calculation of the RR-based affinity matrix is 0.858
CPU seconds.

Features Parameters PF Segments
MFCCs (λ = 0.3) 0.54 37.1
Chroma (λ = 0.1) 0.57 36.7
ATMs (λ = 0.1) 0.61 6.1
MFCCs & Chroma (λ = 0.3, 0.1) 0.55 20.6
MFCCs & ATMs (λ = 0.3, 0.1) 0.63 7.1
Chroma & ATMs (λ = 0.1, 0.1) 0.60 8.1
MFCCs & Chroma & ATMs (λ = 0.3, 0.1, 0.1) 0.61 8.8

Table 1. Segment-type labeling performance of the
RRMSA on the Beatles dataset with fixed K = 4.

The best result obtained by the RRMSA on the Beatles
dataset with respect to PF (i.e., 0.63) outperforms the re-
sults obtained by the majority of the state-of-the-art music
segmentation methods listed in Table 2 on the same dataset
previously. The results were rounded down to the nearest
second decimal digit. It is seen that the RRMSA admits
the highest PF when the MFCCs and the ATMs are com-
bined. Similarly, MFCCs combined with Chroma yielded
the top PF in [3] and [6]. Similar conclusions were drawn
in [13], when multiple audio features were combined. It
is worth mentioning that the RRMSA does not involve any
postprocessing based on music knowledge, such as elimi-
nating too short segments or restricting the segment length
to improve the accuracy of music segmentation. This is not
the case for the methods in [7] and [14]. Furthermore, the
RRMSA involves only one parameter in contrast to meth-
ods [3, 7, 14, 17], where the tuning of multiple parameters
is needed.

The segment-type labeling performance of the RRMSA
on the Beatles dataset, when K is estimated by (6), is re-
ported in Table 3. Again, the use of the ATMs for music
representation makes the RRMSA to achieve better per-
formance than that when either the MFCCs or the Chroma
features are used. By combining the ATMs and the MFCCs,
the PF for the RRMSA reaches 0.60. In this case, the es-
timated average number of segments equals the actual av-

Reference Features PF

[3] MFCCs & Chroma 0.63
[6] MFCCs & Chroma 0.62
[17] Chroma 0.60
[14] MFCCs 0.60
[12] ATMs 0.59
Method in [7] as evaluated in [14] MPEG-7 0.58

Table 2. Segment-type labeling performance on the Beat-
les dataset obtained by state-of-the-art methods with fixed
K = 4.



Figure 2. RR-based affinity and self-distance matrices of beat-synchronous feature vectors extracted from the Anna (Go
to Him) by The Beatles when employing the MFCCs (a) and (d), the Chroma features (b) and (e), or the ATMs (c) and (f).
The negative image of the affinity matrices is depicted. It is obvious that RR-based affinity matrices provide more clear and
noise-free structural information than the self-distance matrices for all features.

erage number of segments according to the ground-truth
(i.e., 10). This result indicates that it is possible to perform
a robust unsupervised music structure analysis in a fully
automatic setting.

Further details related to the estimation of K by em-
ploying various audio features and their combinations are
shown in Table 4. The absolute error is defined as |K̄ −
Kg|, where Kg is the actual number of segments based
on the ground-truth. The prediction rate refers to the ra-
tio of the number of music recordings where the number
of segments was predicted correctly over the total num-
ber of music recordings in the dataset. If we consider the
value K̄ = Kg ± 1 as the correct number of predicted seg-
ments, then we obtain the Proximal Prediction Rate (PPR)
(i.e., the last column in Table 4). The results presented in
Table 4 indicate that the combination of the MFCCs and
the ATMs yields the lowest absolute error, resulting to the
highest prediction rate and thus the highest segmentation
accuracy.

Features Parameters PF Segments
MFCCs (λ = 0.3, τ = 0.7) 0.54 24.9
Chroma (λ = 0.1, τ = 0.64) 0.48 26.6
ATMs (λ = 0.1, τ = 0.64) 0.59 6.4
MFCCs + Chroma (λ = 0.3, 0.1, τ = 0.7) 0.59 12.2
MFCCs & ATMs (λ = 0.3, 0.1, τ = 0.23) 0.60 10.0
Chroma & ATMs (λ = 0.3, 0.1, τ = 0.27) 0.56 12.8
MFCCs & Chroma & ATMs (λ = 0.3, 0.1, τ = 0.33) 0.53 20.0

Table 3. Segment-type labeling performance of the
RRMSA on the Beatles dataset for automatically estimated
K.

Features Absolute Error Prediction Rate (%) PPR (%)
MFCCs 1.24 25.26 65.59
Chroma 1.88 15.59 42.47
ATMs 1.72 18.81 52.68
MFCCs & Chroma 1.88 15.60 42.47
MFCCs & ATMs 1.15 30.10 73.11
Chroma& ATMs 1.43 22.58 61.82
MFCCs & Chroma & ATMs 1.22 26.34 67.20

Table 4. Accuracy of the estimation of the number of seg-
ments, K, on the Beatles dataset.

5. CONCLUSIONS

In this paper, a robust and fast method for music structure
analysis (i.e., the RRMSA) has been proposed. In particu-
lar, the ridge regression representation of the MFCCs, the
Chroma, and the ATMs have been used to derive affinity
matrices, where the normalized cuts algorithm has been
applied to obtain the music structure. Among the three
features, the ATMs and the MFCCs have been proved the
most powerful. By linearly combining the RR-based affin-
ity matrices of the MFCCs and the ATMs and applying
next the normalized cuts, state-of-the-art performance on
the Beatles dataset has been reported for a fixed number
of segments. Furthermore, an accurate method to estimate
the number of segments in each music recording has been
developed, enabling a fully automatic unsupervised music
structure analysis.



APPENDIX: PROOF OF THEOREM 1

Let us denote by {S1,S2, . . . ,SK}, a collection of K
independent subspaces. The direct sum of a collection of
K subspaces is denoted by ⊕K

k=1Sk. Let Z be the unique
minimizer of (1) and D be a block-diagonal matrix with
elements dij = zij , if xi and xj belong to the same sub-
space (i.e., music segment here), and dij = 0 otherwise.
We can define Q = Z − D. Without loss of general-
ity let us suppose that xj belongs to the ith subspace, i.e.,
xj = [XZ]j ∈ Si. We can write Q as the sum of two ma-
trices Q1 and Q2 whose supports are on disjoint subsets of
indices, such that [XQ1]j ∈ Si and [XQ2]j ∈ ⊕K

k ̸=iSk.
We show that Q2 = 0. For the sake of contradiction, we
assume that Q2 ̸= 0. Since Z = D +Q1 +Q2, we have
xj = [XZ]j = [X(D+Q1)]j + [XQ2]j . Since xj ∈ Si

and [X(D + Q1)]j ∈ Si, by the independence of sub-
spaces, Si∩⊕K

k ̸=iSk = {0}, we should have [XQ2]j = 0.
But [XQ2]j = 0 implies, xj = [XZ]j = [X(D+Q1)]j

and hence D +Q1 is feasible solution of (1). By the fact
that the supports of Q1 and Q2 are disjoint subsets of in-
dices and Lemma 1, ∥D+Q1∥2F ≤ ∥D+Q1 +Q2∥2F =
∥Z∥2F . That is D + Q1, is a feasible solution of (1) at-
taining a smaller Frobenius norm than ∥Z∥2F , which con-
tradicts the optimality of Z. Thus, Q2 = 0, meaning that
only the blocks that correspond to vectors in the true sub-
spaces are nonzero.
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