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ABSTRACT

Speech signals convey information not only for speakers’
identity and the spoken language, but also for the acqui-
sition devices used during their recording. Therefore, it is
reasonable to perform acquisition device identification by
analyzing the recorded speech signal. To this end, the ran-
dom spectral features (RSFs) are proposed as an intrinsic
fingerprint suitable for device identification. The RSF's are
extracted from each speech signal by first averaging its spec-
trogram along the time axis and then by projecting the re-
sulting mean spectrogram onto a Gaussian random matrix of
compatible dimensions. By applying a sparse-representation
based classifier to the device RSFs, state-of-the-art identi-
fication accuracy of 95.55% has been obtained on a set of
8 telephone handsets, from Lincoln-Labs Handset Database
(LLHDB).

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]|: Applications—Signal Pro-
cessing

General Terms

Theory, Measurement, Reliability, Experimentation, Verifi-
cation

Keywords

Digital speech forensics, random features, sparse represen-
tation.

1. INTRODUCTION

Speech is the most natural way to communicate between
humans. Nowadays, speech communication systems acquire
transmit, store, and process the information in digital form.
However, the digital speech content can be imperceptibly
altered by malicious, even amateur, users by using a variety
of low-cost audio editing software. This creates a serious
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threat to the knowledge life cycle. Indeed, when hearing is
no longer believing, the process of going from data to infor-
mation, knowledge, understanding and, decision making is
severely compromised [5]. The consequences of this threat
permeate a wide variety of fields, such as intellectual prop-
erty, intelligence gathering, forensics, and news reporting to
name a few. Currently, the theories and tools to combat this
threat in the field of digital speech forensics are still in their
infancy. Therefore, there is an urgent need to advance the
state-of-the-art in this field [6].

A first step to remedy the aforementioned threat is to
extract forensic evidence about the mechanism involved in
the generation of the speech recording by analyzing only
the speech signal [6]. That is, to identify the acquisition
device by assuming that the acquisition devices along with
their associated signal processing chain leave behind intrin-
sic traces in the speech signal. Indeed, the electronic de-
vices, especially when include a microphone, cannot have
exactly the same frequency response due to tolerances in
the production of the electronic components and the differ-
ent designs employed by the various manufacturers [7]. This
implies that the recorded speech can be considered as a sig-
nal whose spectrum is the product of the genuine speech
spectrum, driving the acquisition device, and the frequency
response of the latter. Consequently, the recorded speech
signal can be exploited in device identification, following a
blind-passive approach, as opposed to active embedding of
watermarks or having access to input-output pairs [6].

Although there are significant advances in image forensics
[5], audio forensics are less developed [9]. Few exceptions in-
clude the authentication of MP3 [14] and the authentication
of speakers’ environment [11, 8, 10]. Similarly, a few au-
tomatic acquisition device identification systems have been
developed. For instance, a method for the classification of 4
microphones has been proposed in [8]. The speech signal is
parameterized by employing time domain features and the
mel-frequency cepstral coefficients (MFCCs). The identifi-
cation of the microphones is performed by a Naive Bayes
classifier at a short-time frame level. Accuracies on the or-
der of 60-75% have been reported. In [6], the identification
of 8 landline telephone handsets and 8 microphones is ad-
dressed. In particular, the intrinsic characteristics of the
device are captured by a template constructed by append-
ing together the means of a Gaussian mixture trained on
the speech recordings of each device. To this end, linear-
and mel-scaled cepstral coefficients were employed for speech
signal representation. Classification accuracies higher than
90% have been achieved, when a support vector machine



(SVM) classifier was employed. Recently, a robust system
for the identification of cell-phones has been proposed in [7].
In particular, when the MFCCs extracted from device speech
recordings are classified by an SVM, 14 different cell-phones
are identified with an accuracy of 96.42%.

In this paper, a novel blind-passive method for landline
telephone handset identification is proposed. The method
resorts on suitable feature extraction from speech record-
ings and their sparse representation, enabling to trace the
recording device. In particular, the random spectral fea-
tures (RSFs) are proposed as intrinsic features for tracing
the recording device. The RSFs are obtained as follows:
the spectrogram of each speech recording is computed and
it is averaged next along the time axis, yielding the mean
spectrogram. Then, the dimensionality of the mean spec-
trogram is reduced by random projections [1] yielding the
RSFs of speech recording. These RSFs form an overcom-
plete dictionary of basis signals for devices’ intrinsic traces,
which is exploited for sparse representation-based classifica-
tion (SRC) [13]. If sufficient training speech recordings are
available for each device, it is possible to express any RSF's
extracted from an unknown (test) device as a compact linear
combination of the dictionary atoms for the device actually
used for its recording. This representation is designed to be
sparse, because it involves only a small fraction of the dic-
tionary atoms and can be computed efficiently via £;-norm
optimization. The classification is performed by assigning
each vector of test RSFs the device identity (ID) the dictio-
nary atoms weighted by non-zero coefficients are associated
with.

The performance of the proposed method in the identi-
fication of 8 telephone handsets is assessed by conducting
experiments on the Lincoln-Labs Handset Database (LL-
HDB) [12] when a stratified 2-fold cross-validation is ap-
plied. For comparison purposes, the mean 23-dimensional
MFCC vector of each speech recording is considered as a
baseline feature for device characterization. Performance
comparisons are made against the linear SVM [3] and the
nearest-neighbor (NN) classifier, which employs the cosine
similarity measure. The experimental results demonstrate
the effectiveness of the proposed RSFs over the MFCCs as
device fingerprints, no matter which classifier is employed.
Meanwhile, the proposed device identification method yields
an accuracy of 95.55%, outperforming the state-of-the-art
method [6] on the LLHDB dataset.

The paper is organized as follows. In Section 2, the RSF's
are introduced and the calculation of the MFCCs is de-
scribed. The sparse representation-based device identifica-
tion is detailed in Section 3. The dataset and the experi-
mental results are presented in Section 4. Conclusions are
drawn in Section 5.

2. INTRINSIC FINGERPRINT

EXTRACTION

The majority of features employed in tasks, such as speech
and speaker recognition, spoken language identification, etc.
are based on the spectrum of the speech signal. Assuming
that the acquisition device is a linear time-invariant system,
the impact of the acquisition device on the recorded speech
can be modeled by the convolution of the original speech
and the impulse response of the device. Thus, the identity
of each acquisition device is embedded into the recorded
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speech, since the spectrum of any windowed recorded speech
segment is the product of the spectrum of the original speech
signal and the device frequency response.

Motivated by the aforementioned assumption, the RSFs
are proposed as intrinsic traces of recording devices. The
RSFs are obtained as follows. The spectrogram of each
recorded speech signal is calculated by employing frames of
duration 64 ms with a hop size of 32 ms and 2048 FFT bins.
Then, the logarithm of the spectrogram is calculated and
averaged along the time axis, yielding a 2048-dimensional
mean spectrogram. The dimensionality of the mean spec-
trogram is reduced to d < 2048 by employing a d x 2048 or-
thogonal random Gaussian matrix, as described in [1]. The
resulting d-dimensional RSF's are used for acquisition device
representation.

Let X € R¥*® be the data matrix that contains s vectors
of RSFs of size d in its columns. The entries of X are further
post-processed as follows: Each row of X is normalized to
the range [0, 1] by subtracting from each matrix element the
row minimum and then by dividing it with the difference
between the row maximum and the row minimum.

The MFCCs are considered as baseline features [6]. They
encode the frequency content of the speech signal by parame-
terizing the rough shape of spectral envelope. Following [6],
the MFCC calculation employs frames of duration 20 ms
with a hop size of 10 ms, and a 42-band filter bank. The
correlation between the frequency bands is reduced by ap-
plying the discrete cosine transform along the log-energies
of the bands. The sequence of 23-dimensional MFCCs is av-
eraged along the time axis yielding a 23-dimensional mean
vector. The data matrix containing the MFCCs is postpro-
cessed as described previously for the RSFs.

In Figs. 1 and 2, the RSFs and the MFCCs are depicted,
for the same speech utterance recorded by 8 different tele-
phone handsets, respectively. Clearly, both the RSFs and
the MFCCs convey discriminant information for the record-
ing device.

3. ACQUISITION DEVICE IDENTIFICATION

VIA SPARSE REPRESENTATION

The problem of revealing the device identity of a vector of
RSFs, given a number of labeled RSFs from N acquisition
devices is addressed based on the SRC [13].

Let us denote by A; = [a;1]ai2]|...|ain;] € R*™i the
dictionary that contains n; RSFs stemming from the ith
device as column vectors (i.e., dictionary atoms). Given a
vector of test RSFs y € R? that comes from the ith device,
we can assume that y is expressed as a linear combination
of the atoms that are associated to the ith device, i.e.,

g
y=> aijcij=Aic (1)
j=1
where ¢; ; € R are coefficients, which form the coefficient
vector ¢; = [¢i1,¢Ci2, .- -, ci,"i]T‘
Next, let A = [A1]Az|...|An] € R™*™ be an overcom-
plete dictionary formed by concatenating n RSFs, which

stem from N acquisition devices. Thus, the linear repre-
sentation of y € R? in (1) can be equivalently rewritten as

(2)

where ¢ = [07]...|07|c]|07]|...|07]T is the n x 1 aug-
mented coefficient vector, whose elements are zero except

y=Ac
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Figure 1: RSF's of a speech utterance recorded by 8 different telephone handsets in LLHDB.
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Figure 2: 23-dimensional mean MFCCs of a speech utterance recorded by 8 different telephone handsets in

LLHDB.

those associated with the ith device. Thus, the entries of ¢
contain information about the device the test vector of RSFs
y € R? comes from.

Since the device ID of a test vector of RSFs is unknown,
we can predict it by seeking the sparsest solution to the lin-
ear system of equations y = A c. Formally, given the over-
complete dictionary A and the vector of test RSFs y € R?,
the problem of sparse representation is to find the coefficient
vector ¢, such that y = A ¢ and ||c||o is minimized, i.e.,

(3)

where ||.]|o is the £y quasi-norm returning the number of the
non-zero entries of a vector. Finding the solution of the op-
timization problem (3) is NP-hard due to the nature of the
underlying combinational optimization. An approximate so-
lution to the problem (3) can be obtained by replacing the
o norm with the ¢; norm:

¢’ = argmin ||c|lo subject to Ac =y
C

(4)

where ||.||1 denotes the ¢; norm of a vector. In [4], it has

c¢” = argmin |[c||y subject to Ac=y
Cc
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been proved that if the solution is sparse enough, then the
solution of (3) is equivalent to the solution of (4), which
can be obtained by standard linear programming methods
in polynomial time.

A test vector of RSFs can be classified as follows. The
coefficient vector ¢* is obtained by solving (4). Ideally, c*
contains non-zero entries in positions associated with the
dictionary atoms (i.e., columns of A) stemming from a single
device, so that we can easily assign the vector of test RSFs
y to that device. However, due to modeling errors, there are
small non-zero entries in ¢* that are associated to multiple
devices. To cope with this problem, each RSF is classified
to the device class that minimizes the residual r;(y) = ||y —
A §;(c)]|2, where 0;(c) € R" is a new vector, whose nonzero
entries are associated to the ith device only [13].

In Fig. 3 (a), the sparse representation coefficients c for a
test RSF vector y extracted from a carbon-button telephone
handset with the ID CB1 are illustrated. Fig. 3 (b) shows
the residual 7;(y) with respect to 8 telephone handsets IDs.
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Figure 3: The test vector of RSFs y has been extracted by a carbon-button telephone handset with the ID:
CB1. (a) The values of the sparse coefficients c. The non-zero entries of ¢ are mainly associated with RSFs
extracted from speech utterances recorded with the CB1. (b) The residuals r;(y) of the RSFs. The smallest
residual value reveals the identity of the telephone handset (i.e., CB1).

Table 1: Best telephone handset identification accuracies achieved by the RSFs and the MFCCs, when the

SRC, the linear SVM, and the NN are employed.

Features Feature dimension | Classifier | Accuracy (%)
RSFs 325 SRC 95.55
RSFs 625 SVM 94.81
RSF's 475 NN 88.23
MFCCs 23 SRC 89.79
MFCCs 23 SVM 87.35
MFCCs 23 NN 81.95

[ MFCCs- based Gaussian supervector[6] | N/A [ SVM [ 93.20

4. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed method
in acquisition device identification, experiments were con-
ducted on the same subset of the Lincoln-Labs Handset
Database (LLHDB) [12] as in [6]. This subset consists of
speech recordings from 53 speakers (24 males and 29 fe-
males) acquired by 8 landline telephone handsets. 4 of tele-
phone handsets are carbon-button (CB1-CB4) and the re-
maining 4 are electrect (EL1-EL4). Following the experi-
mental set-up used in [6], stratified 2-fold cross-validation is
employed in the experiments conducted on the LLHDB.

The best identification accuracies are summarized in Ta-
ble 1, when the RSFs and the MFCCs are classified by the
SRC [13], the linear SVM [3], and the NN with the cosine
similarity measure. By inspecting Table 1, it is clear that
the RSF's are able to identify the acquisition device commit-
ting less errors than the MFFCs, no matter which classifier
is employed. Moreover, the RSFs achieve state-of-the-art
identification accuracy if they are fed to either the SVM or
the SRC classifier. The latter classifier achieves the best re-
ported identification accuracy (i.e., 95.55%) on the LLHDB.
Similarly, the SRC outperforms the SVM, when the MFCCs
are employed for device characterization.

The performance of the RSFs in telephone handset iden-
tification as a function of features dimension (i.e., d) is de-
picted in Fig. 4. It is clear that for d > 200 the SRC out-
performs the best result reported in [6], demonstrating the

94

robustness of the proposed approach in acquisition device
identification.

Insight to the performance of the SRC is offered by the
confusion matrix shown in Fig. 5 for d = 325. The gray shad-
ing in Fig. 5 highlights the fact that most of the identifica-
tion errors remain within the transducer class (i.e., carbon-
button and electrect). The carbon-button telephone hand-
sets are identified more accurately than the electrect ones.
This result is attributed to the fact that the transfer func-
tions between the various carbon-button telephone handsets
are quite different. Similar results were reported in [6].

The accurate telephone handset identification by RSFs
and their sparse representations is attributed to the follow-
ing fact. It is well known that by projecting the data onto
an orthogonal random Gaussian matrix, the dictionary A
obeys the restricted isometry property (RIP) of a certain,
appropriate order (say S) [2]. When this property holds,
A approximately preserves the Euclidean length of S-sparse
RSFs, which in turn implies that S-sparse vectors cannot
be in the null space of A. The latter is needed since other-
wise there would be no hope of reconstructing these vectors.
Clearly, it cannot be guaranteed that the RIP holds for the
dictionary constructed by employing the MFCCs as atoms.

5. CONCLUSIONS

A promising method for telephone handset identification
from speech signals has been proposed. The RSFs have been
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Figure 4: Telephone handsets identification accu-
racy for the RSF obtained by the SRC, the SVM,
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Figure 5: Confusion matrix for 8 telephone handsets
based on the RSF's for d = 325 and their sparse repre-
sentation on the LLHDB. The rows of the confusion
matrix correspond to the predicted device and the
columns indicate the actual device.

demonstrated to capture the intrinsic trace of the acquisi-
tion device, while the sparse representation-based classifica-
tion has been shown to be able to identify the acquisition
device. The experimental results validate the robustness of
the RSFs over the MFCCs for device characterization, yield-
ing a state-of-the-art performance in recognizing 8 telephone
handsets from the LLHDB.
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