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Abstract

In this paper a new variation of Support Vector Ma-
chines (SVM) is introduced. The proposed method is
called Subclass Support Vector Machine (SSVM) and
makes use of principles from Discriminant Analysis
field using subclasses. The major difference over SVM
is that it takes into account the existence of subclasses in
the classes and tries to minimize the distribution of the
samples within each subclass. Experiments over vari-
ous databases are conducted and the results are com-
pared against other classifiers.

1. Introduction

Support Vector Machines (SVM), [11], have been
used successfully in a variety of occasions as classifi-
cation tool and have been appreciated for their stability
and solid theoretical foundation.

In their standard form SVM try to find a separating
decision hyperplane with maximum margin between the
classes [11]. One of their major advantages is their
property of using a parametric technique based on struc-
tural risk analysis as opposed to nonparametric tech-
niques. The popularity of SVM is consequence of
their ability to represent each classification problem as
a quadratic optimization problem. SVM are also quite
popular for their ability to construct nonlinear decision
surfaces. Using the Kernel trick samples are projected
to a new high dimensional space where the problem can
be solved.

Despite SVM strength and advantages, variations
that improve some of their characteristics have been in-
troduced [9], [12], [7]. One such variation is proposed
in this paper which uses information normally neglected
by SVM like division of the samples into subclasses.
Both linear and non linear cases are examined and ex-
periments are conducted.

2 Subclass Support Vector Machines

The notion of subclasses has been successfully used
in the case of dimensionality reduction where the Clus-
tering based Discriminant Analysis and the Subclass
Discriminant Analysis have been proposed in [13] and
[2] respectively. Moreover, in [3] subclasses have been
combined with error correcting output codes in the Sub-
class ECOC classification framework. In all the above
cases the first step is to estimate the subclasses into each
class. This is achieved using a clustering algorithm like
k-means, spectral clustering, Nearest Neighbor cluster-
ing or other clustering methods [10].

The clustering method used has minor impact in the
classification performance as shown in [13] and thus,
any clustering algorithm can work in these approaches.
The optimal number of subclasses is usually chosen by
a 10 fold cross validation. Similarly, the first step in
the proposed SSVM is to estimate the subclasses within
each class.

2.1 Linear Subclass Support Vector Machines

The subclasses found by the clustering method are
being used for the calculation of the within-subclasses
scatter matrix Ss proposed in [2] and defined as:

Ss =

NC∑
i=1

Ki∑
j=1

Nij∑
k=1

pij(xijk − µij)(xijk − µij)T (1)

whereNC is the number of classes, Ki is the number of
subclasses for each class i,Nij is the number of samples
belonging to subclass j of class i,µij is the mean vector
of each subclass and pij =

Nij
N is the prior probability

of jth subclass of class i. The matrix Ss represents the
dispersion within each subclass. Thus, we would like
to minimize this dispersion after the projection of the
initial samples to a reduced dimensionality subspace.

The proposed approach is called Subclass Support
Vector Machines (SSVM) and takes into account the
subclass distribution in order produce more efficient and
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robust solutions than standard SVM. It is straightfor-
ward to show that the distribution of the samples in
each subclass after the projection to a vectorw is given
by wTSsw. Thus, the proposed objective criterion to
be minimized is wTSsw subject to separability con-
straints as given in the SVM. If the samples are not lin-
early separable the optimization problem to be solved is
(taking into account the cost of error classifications):

min
w,b

1

2
wTSsw + C

N∑
i=1

ξi, wTSsw > 0 (2)

subject to the separability constraints:

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., N

(3)
where ξi are again non-negative slack variables used for
the misclassified samples and C is a constant defining
the cost of these misclassifications. By assigning values
to the constant C one can reproduce the two extreme
cases, one case with high punishment of errors and the
second case where errors are virtually overlooked.

The proposed criterion (2) requires minimization of
the samples scatter in each subclass with the constraints
of SVM separability in (3). That is the solution provides
well separated classes with compact subclasses.

The solution of (2) is given by the saddle point of the
Lagrangian:

L(w, b,a, b, ξ) = wTSsw + C

N∑
i=1

ξi

−
N∑
i=1

ai[yi(w
Txi + b)− 1 + ξi]−

N∑
i=1

βiξi

(4)

with a = [a1, .., aN ] and β = [β1, .., βN ] being the La-
grange multiplier vectors for the constraints imposed in
(3). Provided that Ss is non-singular the optimal vec-
torw can be found by the Karush–Kuhn–Tucker (KKT)
conditions and is given by:

Sswo =
1

2

N∑
i=1

ai,oyixi ⇔ wo =
1

2
S−1s

N∑
i=1

ai,oyixi

(5)
By replacing (5) into (4) and using the KKT condi-

tions, the optimization problem (2) is now reformulated
to its dual form (offered for QP optimization):

max
a

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjKSSVM(xi,xj)

subject to 0 ≤ ai ≤ C, ∀i = 1, .., N and
N∑
i=1

yiai = 0

(6)

where KSSVM = UTS−1s U is the new kernel matrix
created for SSVM algorithm and U = [x1, ...,xN ] ∈

<DxN is the initial training data matrix of the samples.
For comparison reasons in standard linear SVM the ker-
nel matrix is given byKSVM = UTU .

2.2 Non-linear expansion of SSVM

Up to this point only linear separation surfaces have
been calculated and used. It is obvious though that as
with every SVM variation there is a straightforward ex-
tension from the linear classification to the non-linear
one. The whole idea is based onto projecting the ini-
tial samples x ∈ <D to a higher dimensional space
<K with K > D into which the classification problem
is solved. To make the whole idea feasible the ‘kernel
trick’ is used by replacing the inner product found in the
SVM algorithm with a kernel function that uses a map-
ping, usually denoted as φ, that maps each sample from
the initial space into a new arbitrary dimensional space.
This new space is not necessary to be calculated explic-
itly but instead uses the mapping of the inner products
to the new space. In this new space linear classification
can be used.

After passing the samples from the mapping function
we virtually have φ(x) ∈ <K instead of x ∈ <D. It can
be pointed out that there is no bound of the dimension
of the new space that could be infinite as in the case
of RBF kernel functions. The relations dominating the
new space are identical with the previous ones into the
initial space. That is the within subclass scatter matrix
is:

Sφs =

NC∑
i=1

Ki∑
j=1

Nij∑
k=1

pij(φ(xijk)−µφij)(φ(xijk)−µ
φ
ij)

T

(7)
where NC is the number of classes, Ki is the num-
ber of subclasses for each class i, Nij is the number
of samples belonging to subclass j of class i, µφij =

( 1
Nij

)
∑
x∈Cij

φ(x) is the mean vector of each subclass

in the feature space, pjk =
Njk
N is the prior probabil-

ity of the k-th subclass of class j. As can be seen the
clustering is done in the initial space and only the final
problem is solved in the feature space (the mapped one).

The problem now is stated as:

min
w,b,ξ

1

2
wTSφsw + C

N∑
i=1

ξi, wTSφsw > 0 (8)

with constraints:

yi(w
Tφ(x) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., N

(9)
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which makes the analogy with the linear case obvious.
A problem that is more common in the non-linear case
though is the case where Sφs is singular.

We can use an approach similar to the one proposed
in [5]. That is, we can apply Singular Value Decompo-
sition on Ss and decompose it to Ss = V TΣV , where
V is an orthonormal matrix that contains the eigenvec-
tors of Ss and Σ a diagonal matrix that contains the
corresponding eigenvalues of Ss. Then we can apply
the transform:

Q = Σ−
1
2V (10)

to the initial samples xi calculating x
′

i = Qxi. It is
straightforward to show that:

x
′T
i x

′

j = x
T
i Q

TQxj = x
T
i S
− 1

2
s xj (11)

The transform (11) applied to the whole initial data
matrix outputs:

U
′
= [x

′

1, ...,x
′

N ] = [Qx1, ...,QxN ] = QU ∈ <DxN

(12)
and using (12) we calculate

U
′TU

′
= UTQTQU = UTS

− 1
2

s U (13)

Thus, applying linear standard SVM to samples x
′

i, i.e.
using (13) as kernel matrix, corresponds to applying lin-
ear SSVM with optimization problem as stated in (6).

We can expand the above notion in non linear cases,
i.e. we can use standard SVM with non linear kernels
applied in the transformed samples x

′

i which results in
applying non linear transforms on the inner products
(11) that appear in the kernel matrix (13). That is, the
RBF kernel can be defined as:

KSSVM−RBF(xi,xj) = e−
g(xi,xj)

2σ2

g(xi,xj) = (xi − xj)TS
− 1

2
s (xi − xj)

(14)

The above procedure has been used in all the experi-
ments with non linear kernels.

3 Experimental Results

The proposed SSVM algorithm has been tested
against SVM and MCVSVM from [12] to estimate
its power using linear and non linear kernels. In all
databases if there was a test set available performance
was calculated on this set otherwise a 5×2 cross vali-
dation [1] was used. The k-means algorithm has been
used in all the experiments for clustering in the SSVM
framework. In the linear case the parameters C = 10
and C = 100 have been used and the results are sum-
marized in Table 1.

Linear Classification performance
Method→ SVM MCVSVM SSVM
Database ↓ C = 10

ETH80 95.16% 94.78% 95.01%
Segment 87.79% 91.78% 93.15%
Shuttle 62.82% 87.74% 89.56%
Vehicle 80.71% 85.68% 86.09%

C = 100
ETH80 95.34% 95.33% 95.54%

Segment 90.98% 95.94% 96.29%
Shuttle 90.99% 88.39% 89.51%
Vehicle 80.71% 89.40% 89.59%

Table 1. Linear performance on databases
for parameter C = 10 and C = 100

The experiments with non-linear kernels were made
using Gaussian or Radial Basis Function kernels of the
form k(x

′

i,x
′

j) = e−γ‖x
′
i−x

′
j‖

2

with parameters be-
ing the parameter C (same with the parameter of linear
SVM) and γ. A combination of these two parameters
have been chosen to demonstrate performance of these
three methods: values for C were 10 and 100 and for
γ, 1 and 10. So there were four sets of experiments for
all databases. Results on all databases in the non-linear
case are shown in Table 2.

The first database used in the experiments is the
ETH80 multi-view object recognition database [6]
which consists of 8 object classes. The results displayed
in Table 1 indicate better performance of SVM for pa-
rameterC = 10 and superiority of SSVM for parameter
C = 100. The average number of subclasses for the 8
problems 1 vs All was for both values of C, K1 = 8.75
and K2 = 21.12, where K1, and K2 is the number of
subclasses for class 1 and 2 respectively.

Non linear experiments on ETH80 database showed
a better performance for standard SVM with parameter
γ = 1 for both values of parameter C, C = 10 and
C = 100 with the differences being -1.26% and -0.72%
respectively, but also a superiority of SSVM for param-
eter γ = 10 also for both values of C with differences
between SSVM and SVM being 1.44% and 1.14%. The
overall best performance obtained by SSVM.

The second experiment includes databases that are
part of the European StatLog project [4]. The 3
datasets used are Segment, Shuttle and Vehicle Silhou-
ettes database. The image segmentation database con-
sists of 2310 samples of 19 dimensions. Results in
Table 1 showed a superiority of SSVM over SVM by
nearly 5%. The average optimal number of subclasses
now was for C = 10: K1 = 2.57 and K2 = 2.42 and
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RBF Classification performance
Method→ SVM MCVSVM SSVM
Database ↓ γ = 1 and C = 10

ETH80 97.19% 95.23% 95.93%
Segment 91.36% 95.85% 97.51%
Shuttle 87.89% 89.44% 90.09%
Vehicle 76.54% 88.79% 90.30%

γ = 10 and C = 10
ETH80 96.12% 96.99% 97.56%

Segment 96.34% 97.13% 98.28%
Shuttle 89.73% 89.74% 91.99%
Vehicle 85.34% 90.92% 92.93%

γ = 1 and C = 100
ETH80 97.28% 96.08% 96.56%

Segment 94.76% 97.29% 98.07%
Shuttle 89.73% 89.80% 91.33%
Vehicle 85.14% 89.23% 91.87%

γ = 10 and C = 100
ETH80 96.36% 96.92% 97.50%

Segment 96.95% 98.21% 98.39%
Shuttle 90.03% 90.43% 92.21%
Vehicle 88.22% 90.29% 91.88%

Table 2. RBF performance on databases
for parameter γ = 1, γ = 10, C = 10 and
C = 100

for C = 100: K1 = 2 and K2 = 1.57 respectively.
Non linear SSVM outperformed non linear SVM in all
sets of parameters by a difference varying from 6.1% to
1.4%.

The vehicle silhouettes database comes from Tur-
ing Institute, Glasgow, Scotland [8]. In this database
SSVM performed better than both SVM and MCVSVM
by roughly 5.5% and 0.4% respectively for parameter
C = 10 and also roughly 9% and 0.2% for parameter
value C = 100. The average optimal number of sub-
classes was for C = 10: K1 = 2.75 and K2 = 2.75
and for C = 100: K1 = 2.5 and K2 = 1.25 respec-
tively. Non linear SSVM outperformed non linear SVM
in all cases with a superiority varying from 3.66% to
13.76%.

In the Shuttle database results were controversial in
the linear case. For parameter C = 10 SSVM outper-
formed SVM by more than 25% but SVM proved better
for C = 100 by nearly 1.5%. In this case the average
optimal number of subclasses now was for C = 10:
K1 = 2.33 and K2 = 4 and for C = 100: K1 = 2 and
K2 = 4.33 respectively. Performance showed a superi-
ority of non linear SSVM in all 4 cases by a difference
approximately 1.6% to 2.2%.

4 Conclusions

In this paper it has been shown that SSVM is a
new promising method that uses notions from classic
SVM and Subclass Based Discriminant Analysis in a
fusion way expanding the idea of exploiting subclasses
in SVM. Its performance on real problems proved to be
quite competitive with other state of the art methods.
In most cases, experiments showed an improved perfor-
mance over SVM most notably in the linear case. Thus,
we may conclude that SSVM achieved separability im-
provement on the standard SVM.
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