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Abstract—In this paper a novel methodology for training
neural networks as car racing controllers is proposed. Our effort
is focused on finding a new fast and effective way to train neural
networks that will avoid stacking in local minima and can learn
from advanced bot-teachers to handle the basic tasks of steering
and acceleration in The Open Racing Car Simulator (TORCS).
The proposed approach is based on Neural Networks that learn
progressively the driving behaviour of other bots. Starting with
a simple rule-based decision driver, our scope is to handle its
decisions with NN and increase its performance as much as
possible. In order to do so, we propose a sequence of Neural
networks that are gradually trained from more dexterous drivers,
as well as, from the simplest to the most skillful controller. Our
method is actually, an effective initialization method for Neural
Networks that leads to increasingly better driving behavior. We
have tested the method in several tracks of increasing difficulty. In
all cases the proposed method resulted in improved bot decisions.

I. INTRODUCTION

Nowadays, video games are becoming more and more
important, as a hot consumer product, as well as a great
opportunity for research in artificial intelligence. The main
goal is to offer fun to the player. In previous years this goal has
been achieved partly through the visual realism and interesting
game scenarios. But every video-game player knew that the
current AI in the games was way far from the actual human
behaviour. When we are playing a game versus one or more
NPC (non-playable character) we can easily realize that we
are not playing versus another human because either the other
player is too simple to beat, figuring out a specific efficient
strategy, or the AI is so complicated that the human loses every
time. Artificial intelligence in computer games is infused into
NPCs with a view to giving the human player the illusion of
a clever human opponent. Initially we have to create a NPC
that imitates the behaviour of a human player [1].

However, we have to bear in mind that the NPC must
have the ability to adapt depending on the current state
and environment and the current opponents in the game.
Computational intelligence methods can be implemented to
deal with the adaptation task. Such methods can be retrieved
from evolutionary algorithms and Neural Networks [2].

Previous approaches to car racing were already developed
for the forerunner of TORCS, the robot auto racing simu-
lator (RARS) [3]. For example, Stanley [4] developed a car
racing strategy that depended on range-finders and developed
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a sensory-motor mapping with the incremental neural evolu-
tion of augmenting topologies (NEAT) approach. The most
approaches are developed for TORCS, some of them are the
following.

Julian Togelius and Simon M. Lucas proposed a neural
network using evolution both on sensor parameters and neural
networks weights . The fitness that is used is calculated as the
number of waypoints it has passed, divided by the number of
waypoints in the track, plus an intermediate term representing
how far it is on its way to the next waypoint. [5]. Moreover,
an examination on various versions of Genetic Programming
and a comparison against Artificial Neural Network for car
racing controller is performed in [6].

The Cognitive BOdySpaces for Torcs-based Adaptive Rac-
ing (COBOSTAR), which was developed by M. V. Butz and
T. D. Lonneker [7], is divided in two parts: on-track optimiza-
tion and off-track optimization. Actually, they implemented
heuristic functions for mapping input data into decision. These
functions were different when the controller was on-track or
off-track.

Another approach has been proposed in [8]. The idea behind
this bot was to have a driving architecture based on a set of
simple controllers. Each controller is applied as a separate
module in charge of a basic driving action. Two important
modules are the learning module, which finds where the
bot has to increase or reduce its speed, and the opponents
management module, which adapts the agent behaviour when
the opponents are close.

Cardamone’s, Loiacono’s and Lanzi’s approach [9] consists
of an evolved neural network, implementing a basic driver
behaviour, compounded with code for basic tasks such as the
start, the crash-recovery, the gear change, and the overtaking.
They use neuro-evolution of augmented topologies(NEAT)[4]
with aim to predict target speed and target position for a given
input configuration. The implemented fitness functions is the
error between the actual values and the predicted ones.

The combination of a fuzzy logic module with a classifier
module and a finite state machine is proposed [10] with a
view to tackling a variety of TORCS commands. In [11]
a study of imitation of controllers behavior is represented.
In this approach a human controller, a rule-based controller
and a controller based in learning methods is used for data
extraction. An artificial neural network is trained with back-
propagation algorithm. The decisions that ANN had to approx-
imate was accelerate, break, wheel steering and controllers
gear. A human-like controller is proposed on [12], where the
author develop a system that learns track’s morphology. A
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review paper that contains most of previous approaches can
be found in [13][14].

The basic idea in the proposed method, is to use Neural
Networks for the decisions of the driver bot. That is, the bot
is a single hidden layer NN trained using back-propagation.
The training data are collected using other controllers that
are utilizing different policies to control the car. That is,
the proposed bot is trained by other bots. We expect to
enhance the performance of the initial controllers since the
NN will smoothly imitate their behaviour. Moreover, in order
to improve its performance during the learning phase, we
implement a learning chain architecture, which is in fact a
sequence of Neural Networks. The weights of these NN are
initialized from the previous steps.

The major problem that the proposed approach tries to
solve is the difficulty to train Neural Networks in complex
problem solving that usually involves a priori knowledge
of the human creators encoded in rule-based systems. That
is, the best NPC are very complex and take contradictory
decisions in very similar situations in order to perform on the
limit. When someone tries to train neural networks straight
to the data produced by these complex bots he will find
that even if in terms of MSE (Mean Squared Error) the NN
obtains a very low value, when it comes to real driving in
specific tracks the performance is very poor. This fact can
be attributed in overtraining or stuck in local minima. The
proposed methodology is to use simpler drivers as first trainers
and then to proceed in training with more complex drivers.
That is, the NN-bot will learn first to stay in the track and
follow smooth driving and then to drive on the limit.

The first step of the proposed approach is the creation of
a NN from data obtained from the Simple Driver which is
the simplest controller provided with java client. The output
weights are used as initialization weights in another NN
trained from extracted data from another controller, instead
of random initialization. We follow the same policy for a
sequence of Neural Networks designed from data from another
two controllers. We propose a progressive learning method via
initialization of the weights with past experience from other
simpler bots. Weight initialization is a state of the art problem
in feed-forward neural networks which affects the detection of
the global minimum solution, the speed of the convergence,
the successful convergence of the NN and also the ability of
generalization. In contrast with other learning approaches in
TORCS, we did not give effort implementing neural networks
to best encode human driving knowledge directly. Instead, we
propose a training methodology inspired by the human practice
of proceeding to more advanced teachers when you assimilate
the knowledge of the current teacher. This is obtained by im-
itating the other controllers behavior solving the NN weights
initialization task by using our learning-chain architecture.

II. TORCS ENVIRONMENT

The open race car simulator (TORCS) provides an open
source car racing environment with a very realistic simula-
tor that has a sophisticated physic engine which takes into

consideration real car racing issues such as fuel consump-
tion, collisions or traction. Besides that, TORCS offers a
very realistic game-play and graphics. It is a well designed
simulator which can be compared with the finest race game
titles. Additionally, TORCS competition API [15] provides
a very flexible and simple client-server architecture. Server
stands for the game’s functions, and client stands for the car
agent handling. The above characteristics justify why it has
been used for research purposes in the scientific community,
especially for solving the simulated racing car challenge task.
In 2011, three different challenges were held; the EVO-2011
in Torino, ACM GECOO-2011 in Dublin and the IEEE CIG-
2011 in Seoul.

The first approaches appeared, were rule-based and only
slightly optimized on several aspects. Our approach in this
challenging task is based on Neural networks architecture
of sequential neural networks which is utilized with view to
initialize the next sequence. Beginning with a simple driver,
we hope to progressively imitate the behavior of the 2009 CIG
champion. The proposed controller is based on a feed forward
ANN (Artificial Neural Network) that was trained with data
generated by several controllers using back-propagation.

TORCS competition API consists of a server component
that supports the general TORCS set-up [16] and returns
information sensors about the controller and the track. The
client component uses these information to apply its strategy.
The controllers (clients) run as external programs and commu-
nicate with the server. At each game tic the controller receives
sensor data that correspond to the car’s current state and its
surrounding environment (the tracks and the components). The
controller has to calculate four output parameters (the wheel
steering, the gas pedal, the fuel level and the break pedal).
Its strategy depends on the current input (information from
sensors). In the proposed method we use learning methods in
order to build output commands.

The sensors novelty is that they do not contain the whole
track information, but they carry only simulated local in-
formation instead. In particular, the available sensors are
an angle sensor, which specifies the current angle between
the car direction and the track axis, the current speed in
longitudinal and transverse axes of the car, 19 range sensors,
which sample the free track space in front of the car and they
are only valid while on track, 36 opponent sensors, which
notice opponents around the car, the current engine speed in
rounds per minute, the current gear, the track position with
respect to the track edges, and the current rotation speed of
the four wheels. Moreover, there is further racing information
available including the current lap time, the damage of the car,
the distance from the start line along the track line, the total
distance raced, the amount of remaining fuel, the last lap time
and the standing in the race. For the car control, there is a
gas pedal and a brake pedal, gear shifting, and steering values
available.

Thus, the controller’s strategy cannot receive information
about tracks morphology (such as which curve comes next)
and it depends only on the local information (the sensors they

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 117



were described before).

III. PROBLEM STATEMENT

It is well known that the training of a NN can be viewed
as the optimization (minimization) of the error with respect
to the weights. The particular local minimum will define the
quality of the Neural Network in terms of learning the specific
training sample an in terms of its behavior in unknown input
(generalization ability). If the minimum is close to the global
solution the performance will be acceptable and the training
successful in terms of MSE. On the other hand, there are
minima that result in poorly trained networks in terms of
generalization. The two important factors that influence the
final solution are the weights initialization and the algorithm
that is used. Moreover the weights initialization determines
the speed of convergence, the probability of convergence
and the generalization. Thus it is clear that it is important
part of the Neural network. However, the usual initialization
approach is to use a random number generator to produce
the weights. It seems defective that we leave an important
fact at random especially when the optimization task is rather
complex. Weight initialization has been widely recognized
as one of the most effective approaches in speeding up the
training of neural network.

Weight initialization techniques have been extensively ex-
amined in feed-forward neural networks. Some approaches
rely on defining an optimal distribution and range for the
weights either empirically or based on characteristics of the
neurons, Zhang and Ciesielski proposed a centred initialization
approach for solving the object detection task. Instead of using
the classical random approach, they place the highest initial
weights at the center of the input field. Weights values decrease
uniformly to the perimeter [17]. Several approaches, [18], were
compared in 8 benchmark problems and it was concluded that
the method proposed in [19] is the most effective. Moreover,
a number of techniques rely on either neglecting the scaling
effect or approximating the sigmoidal activation function to
obtain least squares based techniques. Our method rely on
empirically based approaches. We try to give a quick and
effective solution for the initialization problem based on the
fact that the experience of previous controllers, will lead to a
fast and accurate learning process.

Our architecture is based on Multi-Layer-Perceptron Net-
works. For MLP architecture we define zl and yl the output of
the lth layer before and after the use of the activation function.
The weight matrix and bias Wl and bl for the lth layer. Let x
be the input vector. The number of the neurons in each layer
is denoted by nl and the size of the input vector is n0. The
training data is composed by input data and the desired output
(xt, d

L
t ). We wish the neural network output to approximate

as much as possible the desired output (training label) [20].
Assuming that we have a Neural Network with one hidden

layer. We can represent the NN with the above equation for
the hidden layer(2nd layer):

zi(t) = f(
∑

j

w1jk(t)xj(t) + b1(t)) (1)

where f is the activation function which in our case is hyper-
bolic tangent, w1,b1 weights and bias in the hidden layer, x
the input vector and the z the output of the neurons in the
hidden layer. And secondly in the output layer equation (3rd
layer):

yi(t) = f(
∑

j

w2jk(t)zj(t) + b2(t)) (2)

weights and bias are fixed during the forward and backward
pass of back-propagation algorithm. Also we can say that
general zl = W ∗ zl−1 + bl where z0 correspond to input
vector. The algorithm is revealed by the following equations:

E(t) =
1

2

∑

k=1

(dk(t)− yk(t))
2 (3)

where dk is the target value for dimension k. We want to know
how to modify weights in order to decrease E. Using gradient
descent:

wij(t+ 1)− wij(t) � ∂E(t)

∂wij(t)
(4)

both for hidden layers and output layers.
As previously mentioned, the initial weights are important

in the learning convergence. If we could approximately choose
the weights close to the global optimum, then the Back-
propagation or any other gradient descent algorithm could take
the networks weights toward the optimum fast and reliably.
Thus, the suggested approach in solving the initialization issue
is based on the observation that if we use weights which
will result real-time in an output close to the desired output
then we are close to the global solution. In our work we
reached the conclusion that using a learning chain from Neural
Networks trained with data from several existed controllers
and using their weight to initialize each other with a specific
order we can approximate in each NN faster and more robustly
the desired output. By comparing the output that each input
weight produces and the desired output of the controller we
put the NN (corresponding to each controller) in a unique
order. Our learning chain is consisted from 4 states. Each
state corresponds to a NN. In each state we use different
extracted data from different controllers. Besides the first state,
each state feedback with the calculated weights the following
state with view to initialize fast and accurate the next Neural
Network.

Figure 1 illustrates the problem of finding the global
solution. Assume that our scope is to approximate as much as
possible Cobostar behavior. We can say that the Simple driver
tries to solve Cobostar approximation task by giving a simple
solution which leads to poor results and in not an acceptable
solution. Simplicity with a more complex driving behavior is
closer to the Cobostar behavior. Correspondingly Tiede and
Ebner controller representation is the closest solution regarding
the global solution which is in our case the Cobostar behavior.
Hence, we can see the problem of initialization as finding a
quick and a good local solution close to the global minima.
That’s the reason why we use weight initialization from Tiede
and Ebner bot in order to approximate Cobostar. In the same
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line, simplicity is used to Tiede and Ebner approximation
task as a quick and good initial solution. Finally, in the same
manner we initialize Simplicity approximation using Simple
driver and the initial NN that imitates Simple driver driving
behavior using random initialization.

Fig. 1. Global minimum approximation.

IV. PROGRESSIVE TRAINING

The first step towards learning from other AI bots is to build
a training set that will be large enough in order to appropriately
sample the input/output space. It is obvious that since the
trainer is another bot we would like this bot to be one of the
best. The objective then is to select a learning machine (Neural
networks in our case) that will be able to be trained using
the training set. Since the task is rather complex the danger
of overtraining or premature convergence to local minima is
evident. Indeed, we first tried to create a Neural Network based
on data collected from Cobostar [7]. We have noticed that
it is not feasible to direct learn Cobostar’s behavior. This is
happening since Cobostar is a sophisticated driver which takes
conflicting decisions in sequential instances. Thus, a neural
network with random weight initialization is prone to stuck
in a poor local minimum solution. Instead, we propose the
progressive training of the NN-bot using other AI bots from
the simpler to the more complex in order to achieve increased
generalization ability.

Fig. 2. Sequence of Neural Networks

The learning chain begins by obtaining data from four
controllers. The first is the “Simple Driver” which is provided
from java client, the second is the “Simplicity” which took
part in CIG 2009 by Wong Ka Chung, the third is “Tiede and
Ebner” which also took part in Torcs competition in CIG 2009
and finally the “Cobostar” [7] which was the champion of the

same competition. We found that there is a correlation between
the controller’s desired output and the corresponding Neural
Network approximations. The neural network output trained
from Simple driver data is closer to Simplicity behavior and
sequentially the NN-bot trained with Simplicity data is closer
to Tiede and Ebner behavior and finally the closest controller
to Cobostar is the NN-bot trained with Tiede and Ebner
data. Therefore the above order is utilized in the proposed
learning chain. This order is shown in Fig. 2. A related work
can be found here [21] where the authors investigate how
to transfer driving behavior between two games Vdrift and
TORCS. We created an artificial neural network sequence with
the above order, and utilized back-propagation for training.
More sophisticated training algorithms may be also used but
their comparison is not in the scope of this work. The neural
networks used a specific structure with one hidden layer which
is sufficient to approximate a bound continuous function with
a specific mean square error [22], [23]. The number of neurons
in the hidden layer is another critical parameter. The number of
neurons was selected using cross-validation in the training set
in order to avoid over-training. After experiments we found out
that 50 neurons are enough to approximate the given functions
and thus we have used this value in all experiments in order to
focus only on the impact of the proposed progressive training
approach. As an activation function for the NN we have used
the hyperbolic tangent

f(t) =
et − e−t

et + e−t
. (5)

The Neural Network weights determine the controller’s
decisions, which will define the behaviour of our bot in real-
time gaming. Using the back-propagation algorithm we were
able to train neural networks to return the desired output data.
Thus, we can use the outputs of the trained neural networks
in order to control the acceleration and steering of the car.

Neural network outputs take values in [−1, 1]. When it
comes to acceleration we use a simple rule to divide the result
to acceleration and break. When the output returns 1, it means
that our controller has to fully accelerate and when it returns
-1 controller has to fully break. The objective was to succeed
convergence in bots behaviour (between the controller that was
used as trainer and our agent).

The training parameters for every bot and the two architec-
tures are shown in the tables II, III, IV, V for both decisions
(acceleration and wheel steering). A technique to estimate the
best learning parameters is implemented. Firstly, we keep a
list of parameters which lead to minimum mean square error
after grid search in the parameter space. Two tracks different
than the ones used for the training data extraction are used for
parameter evaluation. We keep the weights which lead to the
best controller performance in these unknown tracks. Finally,
the trained models are tested in another seven tracks which
are not included in the training or evaluation set. The same
procedure is followed for all the compared models.

The training data was received for each controller from
three tracks fig. 5. For each track we obtained data for two
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laps. Instead of using all the data that the server of TORCS
provide as sensoring data, we use only a subset. For each
track we used 10.000 input states for each controller. Each
input state is composed of 9 input data that represent the
controller’s environment and two output values that correspond
to acceleration and wheel steering. These two outputs are in
fact the desired outputs of the implemented Neural Networks.
That is, we train one neural network that decides about the
acceleration and the other decides about the steering. All the
values are normalized in [−1, 1]. The input vector consists of
the following sensors :

• Angle to track axis [−π, π]
• track position [0, π]
• speed (0,+∞]
• Gear [0, 6]
• 7-11 Track edge sensors [0, 100]

These sensor outputs are considered as inputs to the proposed
NN-bot and the NN-bot must decide and sent to the server the
following two control values in range [−1, 1]:

• accelerate/break
• steering

Besides acceleration, break and steer the controller must
sent to the server also the gear change decision. The gear
change policy is hard coded and it is based on the received
sensor RPM. The table I points out when the controller has
to increase or decrease gear.

TABLE I
CONTROLLERS PERFORMANCES

Current Gear Gear Up Gear down
1 9200 0
2 9400 3300
3 9500 6200
4 9500 7000
5 9500 7300
6 − 7700

TABLE II
NEURAL NETWORK PARAMETERS FOR PROGRESSIVE INITIALIZATION,

STEER DECISION

Method
lr mom epochs MSE Duration (sec)

Rate
Simple Driver 0.001 0.01 20 0.000212 33.56

Simplicity 0.01 0.01 20 0.00323 36.93
Tiede Ebner 0.0011 0.02 20 0.0789 35.55

Cobostar 0.0006 0.01 20 0.0014 37.11

A. Learning chain architecture

The proposed learning chain architecture is a sequence of
Neural Networks that are trained with data obtained from
different AI controllers. The first NN is trained with the
data collected from the simple driver with random weight
initialization, the second NN is trained using data collected
from the Simplicity and weight initialization the final weights

TABLE III
NEURAL NETWORK PARAMETERS FOR RANDOM INITIALIZATION, STEER

DECISION

Method
lr mom epochs MSE Duration (sec)

Rate
Simple Driver 0.001 0.01 20 0.000212 33.56

Simplicity 0.01 0.01 20 0.0189 38.66
Tiede Ebner 0.0001 0.01 20 0.098 35.04

Cobostar 0.0041 0.01 20 0.0021 38.01

TABLE IV
NEURAL NETWORK PARAMETERS FOR PROGRESSIVE INITIALIZATION,

ACCELERATION DECISION

Method
lr mom epochs MSE Duration (sec)

Rate
Simple Driver 0.1 0.1 20 0.000125 49.89

Simplicity 0.1 0.1 20 0.00332 54.65
Tiede Ebner 0.004 0.1 20 0.021 51.54

Cobostar 0.0005 0.01 20 0.09 53.01

of the previous NN, the third NN is trained using data from
Thiede and Ebner and initialized using the previously obtained
weights and finally the fourth NN is trained using data from
the Cobostar and initialized using the weights obtained by the
Thiede and Ebner data. That is, every NN uses the weights
from the previous state. The final controller handled from
neural networks tries to learn Cobostar’s decisions. Using
the proposed approach, the Neural network converges faster,
and using the past experience from simpler bots enhances
its performance. The standard alternative to the proposed
approach is to try to train a NN directly using the training data
obtained by the most sophisticated bot. Results show that the
proposed algorithm is effective since it reduces the lap time
obtained with the random initialization approach. Moreover,
the generalization ability of the proposed method is illustrated
in the experimental results Section. The results in unknown
tracks reveal that our method is more effective in handling
unknown situations.
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Fig. 3. Mean square error for acceleration.

V. EXPERIMENTAL RESULTS

In this Section several experiments that highlight the per-
formance of the proposed NN-bot are presented. More specif-
ically we are comparing the two NN architectures, with pro-
gressive and random weight initialization in 4 crucial factors:
the quality of the solution, which is the actual performance of
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TABLE V
NEURAL NETWORK PARAMETERS FOR RANDOM INITIALIZATION,

ACCELERATION DECISION

Method
lr mom epochs MSE Duration (sec)

Rate
Simple Driver 0.1 0.1 20 0.000125 49.89

Simplicity 0.01 0.01 20 0.00689 52.67
Tiede Ebner 0.0001 0.01 20 0.018 50.55

Cobostar 0.0041 0.01 20 0.19 53.12
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Fig. 4. Mean square error for steer.

the system in several tracks, the experimental convergence of
our networks in learning process, the speed of the convergence
and the generalization ability. To prove the superiority of the
proposed method we have tested the two architectures with the
best set of learning parameters which we find for both cases.
Table VI displays the performances of controllers in several
tracks with the best training parameters. The first comparison
parameter which is the most important is the real performance
of both controllers. The lap times in several tracks reveal the
actual difference between the two architectures. It is obvious
that the proposed approach attains performance that is very
close to the trainer whereas the standard NN training approach
fails to imitate the driving behaviour of Cobostar.

Additionally, figures of acceleration - track axis and wheel
steering - track axis of the two controllers and the Cobostar
trainer reveal the decision that the three controllers sent to
the game server for the same track and the same lap. As we
mentioned before we found the learning parameters with the
referred method in the previous section. The second compari-
son will be the ability for a fast and accurate convergence. This
will be reflected by the mean square error convergence that
we have in the two Neural network architectures. Finally we
will investigate the performance of two controllers in unknown
tracks and extract useful conclusions about the generalization
capability.

Tables VI, VII show the best lap time and the average
time in several tracks, that are illustrated in Figure 6, for the
three controllers, i.e., the Cobostar and the controllers using
the two NN architectures. In all cases Progressive initialization
architecture attains better lap times and average compared
to random initialization architecture. In some tracks it is
noticeable that our proposed architecture achieves lap times
very close to the trainer’s corresponding lap times.

Figures 7, 9, 11, 13 show the difference in acceleration
decision between random network which is the neural network
with random initialization and progressive network which

Fig. 5. Tracks from which we obtained the training data.

Fig. 6. Tracks of the game, used for testing generalization capability.

is the controller implemented with our proposed method.
Respectively figures 8, 10, 12, 14 visualize the differences in
wheel steering decision between the two compared controllers.
More specifically, we plot the speed-distance from start line
decision and distance from track axis-distance from start line
decision. It is obvious that the progressive network succeeds a
more smooth trajectory in contrast to the random network. This
is figured in all distance from track axis-distance from start
line plots. In the same line, it is clear that progressive network
behavior in case of speed resembles the trainer’s behavior more
than the behavior of the random network. Both controller’s
results correspond to their best lap time in the specific tracks.
It is obvious, in both cases that our controller manage to keep a
trajectory close to that of Cobostar. On the other hand, random
initialized controller takes decisions that are rather different
in some cases compared with the decisions of the Cobostar
controller.

The quality and the speed of convergence is another com-
paring factor of both architectures. The mean square error of
neural network convergence is presented in figures 3, 4. These
MSE is extracted from neural networks which are trained from
Cobostar data and with the best learning parameters found.
We can notice that in both cases of steering and acceleration,
progressive network succeeds to converge faster obtaining
smaller MSE.

Last but not least is the comparison of the generalization
ability. This test is actually the results of both architectures
in unknown tracks, from which we did not extract learning
data. We can see from the performance Tables VI, VII that
the difference in best and average lap times between the
two architectures increases in the seven unknown tracks. This
leads us to the conclusion that our method is more robust in
unknown situations.

VI. CONCLUSIONS

In this work we proposed a novel method of Neural Network
training for The Open Car Racing Simulator. In our learning
chain architecture we propose a learning sequence which
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Fig. 7. Speed results in CG track2.
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Fig. 8. Steer results in CG track2.
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Fig. 9. Speed results in CG track1.
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Fig. 10. Steer results in CG track1.
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Fig. 11. Speed results in CG Alpine2.
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Fig. 12. Steer results in Alpine2.
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Fig. 13. Speed results in CG Alpine2.
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Fig. 14. Steer results in Alpine2.
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TABLE VI
BEST LAP TIMES FOR THREE CONTROLLERS

Track/controller Cobostar Progressive Random
CG Speedway1 38.66 39.51 42.26
CG Speedway2 54.03 56.58 59.57

Forza 99.12 102.43 103.89
CG Speedway3 71.42 74.25 79.99

Wheel1 80.28 88.42 101.52
Wheel2 123.14 135.36 155.26
Etrack4 108.81 121.54 127.76
Alpine2 99.98 106.37 119.02
Eroad 63.86 66.54 67.61

Etrack5 26.88 28.73 28.82

TABLE VII
AVERAGE LAP TIMES FOR THREE CONTROLLERS

Track/controller Cobostar Progressive Random
CG Speedway1 41.05 41.64 43.12
CG Speedway2 55.67 57.85 61.23

Forza 102.91 103.62 104.81
CG Speedway3 74.01 77.53 81.19

Wheel1 82.37 90.09 119.64
Wheel2 129.60 142.60 157.74
Etrack4 111.81 124.54 130.76
Alpine2 102.05 112.37 123.13
Eroad 66.86 71.54 72.61

Etrack5 28.01 31.14 36.21

consists of several steps. At each stage the proposed NN-
bot is trained using data obtained from a more sophisticated
controller. This corresponds to progressive training with more
skilled trainers. The connection between the training stages
is the use of the weights obtained from the previous stage
that encode the knowledge of the previously used trainers.
The experimental results highlight that the proposed method
managed to attain superior performance compared to the
classical method of random initialization at each stage. The
criteria of comparison are based on the real-time driving
performance, the ability of effective and fast convergence in
learning phase and the capability of generalization which is
in our case the ability of the controller to take decisions in
unknown tracks. That is, the proposed approach offers an
efficient methodology for NN training when training data of
progressive complexity for the same task can be obtained.
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