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ABSTRACT

In this paper we introduce a novel classification framework

that is based on the combination of the support vector ma-

chine classifier and the graph embedding framework. In par-

ticular we propose the substitution of the support vector ma-

chine kernel with sub-space or sub-manifold kernels, that are

constructed based on the graph embedding framework. Our

technique combines the very good generalization ability of

the support vector machine classifier with the flexibility of

the graph embedding framework resulting in improved clas-

sification performance. The attained experimental results on

several benchmark and real-life data sets, further support our

claim of improved classification performance.

Index Terms— Support Vector Machines, Graph Embed-

ding, Laplacian Matrix

1. INTRODUCTION

In classification, the main objective is to train a classifier,

which generalizes well on unseen data samples. Several clas-

sifiers have been proposed in the literature. However, the Sup-
port Vector Machines (SVM) has been the most popular due

to its state-of-the-art performance and its generalization capa-

bilities.

The standard SVM is a binary classifier that tries to find

a hyperplane that separates two classes of data points. The

resulting decision surface has the maximum margin between

the two classes. The margin is defined as the distance between

the hyperplane and the samples that lie closest to this hyper-

plane. A quadratic convex optimization problem is formu-

lated, which can be solved optimally. Whereas the SVMs are

designed for linear classification problems, they can also con-

struct a non-linear decision surface. This is achieved by map-

ping the initial points into a (usually higher or even infinite)

dimensional Hilbert space through a mapping φ : X → H,

where X is the original domain and H is the Hilbert space.

In this high dimensional space, the data points can be sep-

arable and the maximum margin hyperplane can be found.

The decision surface can be found without having to explic-

itly compute the mapping function φ, but only by computing

dot products in the Hilbert space by means of the kernel trick
[1].

Lately, the Graph Embedding Framework [2] has been

proposed. Under the Graph Embedding Framework many di-

mensionality reduction algorithms such as Principal Compo-

nent Analysis [3] and Linear Discriminant Analysis [4] can be

formulated as graph relationships and thus, resulting in solv-

ing generalized eigenvalue problems.

In this paper, we combine the advantages of the SVM for-

mulation with properties of the graphs that represent the var-

ious dimensionality reduction methods. A new SVM formu-

lation is derived that corresponds to a standard SVM with a

novel precomputed kernel. The resulting Graph Embedded
SVM (GESVM) is shown to obtain competitive results with

comparison to the standard Linear and RBF SVMs in several

benchmark datasets.

Our paper is organized as follows. In Section 2, we make

a short introduction to the SVM classifier as well as the Graph

Embedding Framework. In Section 3 we describe in detail

our proposed Graph Embedded SVM method. Experimental

results are presented in Section 4. Finally, in Section 5 we

conclude our work.

2. PRIOR WORK

2.1. Support Vector Machines

The Support Vector Machine is a binary classifier, which finds

a hyperplane that has the maximum margin between the two

classes. In most of the problems the classes are not linearly

separable, so the SVM tries to find the hyperplane that has

the maximum margin but also that minimizes the training er-

ror. Suppose that we have a binary problem with a data set

{xi, yi}ni=1 where n is the number of samples and the labels

of each sample yi ∈ {−1,+1}. Therefore, we can formulate

the hyperplane as:

w�x− b = 0

s.t. yi(w
�xi − b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n

(1)
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where w is a vector, perpendicular to the hyperplane, b is the

offset and ξi the penalty for the miss-classification, if ξi >
1, then xi is not on the correct side of the separating plane.

The margin between the two classes is equal to 2
‖w‖ so the

problem is to maximize this margin which is equivalent to

minimize w�w
2 , so the problem is formulated as:

min
w,b,ξ

1

2
w�w + C

n∑

i=1

ξi

s.t. yi(w
�xi − b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n

(2)

where C is a penalty parameter. Moreover, this problem can

be solved using Lagrange multipliers and using the KKT con-

ditions we obtain:

w =
n∑

i=1

αiyixi (3)

where αi are the Lagrange multipliers and most of them are

equal to zero. The samples xi that do not have zero Lagrange

multipliers are called support vectors.

The dual problem is formulated as:

max
α

α�e− 1

2
α�Qα

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n

y�α = 0

(4)

where Qij = yik(xi,xj)yj and e = [1, . . . , 1]�. The ker-

nel k(xi,xj) is defined as k(xi,xj) = xT
i xj in the linear

case. By exploiting the kernel trick [1] we can use a non-

linear function φ(xi) to represent the samples in a higher di-

mensional space where they can be linearly separable. As a

result the solution of (4) finds the optimal linear hyper plane

in the high dimensional Hilbert space that corresponds to a

non-linear surface in the initial space.

2.2. Graph Embedding

In this section we provide a short description of the Graph
Embedding framework [2]. Prior work has shown that

many dimensionality reduction algorithms can be integrated

into this framework. The Graph Embedding framework is

based on the introduction of the undirected weighted graph

G = (X,W), whose vertex set consists of the data ma-

trix X = [x1, . . . ,xn]
� ∈ R

n×d, and the similarity matrix

W ∈ R
n×n, whose entries can be positive, negative or zero.

The graph embedding of the graph G is, therefore, an al-

gorithm to find the low dimensional representation of the

data that best preserves the relationships between the ver-

tex pairs of G. The graph G can be seen as an intrinsic

graph. Furthermore, a penalty graph Gp = (X,Wp) can

also be defined, whose corresponding weight matrix penal-

izes specific characteristics of the relationships between the

data points. For projections to one dimension, assuming that

z = [z1, . . . , zn]
� is the vector of the projections of each data

sample xi, the graph objective function to be optimized is:

z∗ = arg min
z�Cz=c

n∑

i,j=1

‖zi − zj‖2Wij

= arg min
z�Cz=c

z�Lz
(5)

where L is the graph Laplacian defined as L = D − W
and D is the diagonal degree matrix defined as Dii =∑n

j=1 Wij , i = 1, . . . , n. C is a constraint matrix to

avoid trivial solutions and is typically a diagonal matrix

for scale normalization, or the graph Laplacian of Gp, that

is C = Lp = Dp −Wp and c is a constant. If we assume

that the vector z is a result of the linear projection z = Xw,

where w ∈ R
d is the projection vector, then the objective to

be optimized becomes

w∗ = arg min
w�X�CXw=c

or w�w=c

n∑

i,j=1

‖w�xi −w�xj‖2Wij

= arg min
w�X�CXw=c

or w�w=c

w�X�LXw
(6)

The above objective can be extended to non-linear pro-

jections by using the kernel trick [1]. The input data are

mapped to a high dimensional Hilbert space H using a map

φ : x → H. The projection vector takes the form w =∑n
i=1 αiφ(xi). By defining the kernel matrix K ∈ R

n×n

as Kij = φ(xi)
�φ(xj), the objective in (6) can be written as

α∗ = arg min
α�K�CKα=c

or α�Kα=c

n∑

i,j=1

‖α�ki −α�kj‖2Wij

= arg min
α�K�CKα=c

or α�Kα=c

α�K�LKα
(7)

where ki is the i-th row of matrix K.

The solutions of (5), (6) and (7) can be obtained by solv-

ing the generalized eigenvalue problem

Av = λBv (8)

where A = L,X�LX,K�LK and

B = I,C,X�CX,K,K�CK, depending on the type of the

problem defined.

As has been showed in [2], there are several dimensional-

ity reduction algorithms that can be reformulated within the

graph embedding framework. The computation of the simi-

larity matrix W is different for each of these algorithms. We



will review these algorithms and show how they can be com-

bined with the SVMs.

2.3. Dimensionality reduction algorithms formulation.

Principal Component Analysis (PCA) [3] is an algorithm that

transforms the data into a new coordinate system such that the

projected samples have maximum variance. Moreover, PCA

finds and removes the projection direction with the minimum

variance, that is

w∗ = arg min
w�w=1

w�Cw (9)

where

C =
1

n

n∑

i=1

(xi − x̄)(xi − x̄)� =
1

n
X(I− 1

n
ee�)X� (10)

In the above, x̄ is the mean of all samples, C is the covari-

ance matrix, I is an identity matrix and e is an n-dimensional

vector of all ones.

Linear Discriminant Analysis (LDA) [4] is used to find

the most discriminative projection directions that effectively

separate two or more classes. LDA uses two scatter matrices,

the within-class scatter SW and the between-class scatter SB ,

that is

SW = X(I−
c∑

k=1

1

nk
ekek�)X�

SB = X(
c∑

k=1

1

nk
ekek� − 1

n
ee�)X�

(11)

In the above, ec is an n-dimensional vector with eki = 1 if

k = ki, 0 otherwise. The objective minimized by LDA is the

ratio between the within-class scatter and the between-class

scatter.

Locally Linear Embedding (LLE) [5] finds a low dimen-

sional representation of the data in which the relationship be-

tween the neighboring samples is preserved. Each data sam-

ple is reconstructed only by its K neighbors. The obtained re-

construction coefficient matrix M is calculated as it has been

shown in [2]. LLE follows the Graph Embedding formulation

with similarity matrix W = M+M� +M�M and penalty

matrix the identity. We define the corresponding Laplacian as

LL = D−W where Dii =
∑n

j=1 Wij .

Laplacian Eigenmaps (LE) [6] find a low dimensional

representation in which the similarities between neighboring

points are preserved. By defining a K-NN graph with weight

matrix entries

Wij = exp(−‖xi − xj‖2/t) if i ∈ NK(j) or j ∈ NK(i)
(12)

we construct the corresponding Laplacian matrix LE = D−
W where Dii =

∑n
j=1 Wij . LE solves the generalized eigen-

value problem

Lu = λDu (13)

It is obvious that LE follows the Graph Embedding frame-

work with similarity matrix W defined in (12) and D as the

penalty matrix.

In Table 1 we summarize the similarity and penalty matri-

ces that should be used in the graph embedding framework in

order to implement all the previous algorithms.

Table 1. Laplacian Matrices Definitions

Algorithm W & B Definition

PCA Wij = 1/n; B = I

LDA Wij = δki,kj
/nk; B = I−1/nee�

LLE W = M+M� +M�M; B = I

LE Wij = exp(−‖xi − xj‖2/t) if i ∈
NK(j) or j ∈ NK(i); B = D

3. GRAPH EMBEDDED SUPPORT VECTOR
MACHINES (GESVM)

The Graph Embedded SVM is a method that combines the

Graph Embedding framework with the SVM classifier. In this

Section we describe our proposed method in detail.

3.1. Proposed method

We assume that we have n data points assembled in a ma-

trix X = [x1, . . . ,xn]
� ∈ R

n×d with label vector y =
[y1, . . . , yn]

�, where yi ∈ {−1,+1}, i = 1, . . . , n. As men-

tioned before, the graph embedding framework enables the

reformulation of existing dimensionality reduction algorithms

into a unified view and allows the desin of novel algorithms.

Each method is associated with a corresponding laplacian ma-

trix L. Different laplacian matrices correspond to different

approaches which optimize specific properties of the low di-

mensional representation of the initial data points.

Following the ideas proposed in [7], [8] for semi-supervised

learning, we propose a novel supervised regularization term

defined as

‖f‖2I =
n∑

i,j=1

(f(xi)− f(xj))Wij = f�Lf (14)

where f = [f(xi), . . . , f(xn)]
� is the vector containing the

values of the function f on the data points. ‖f‖2 can be con-

sidered as a smoothness term that corresponds to the marginal

distribution of the data X. Instead of using the Laplacian only

for encoding the unsupervised graph structure of the data as



proposed in [7], [8] for semi-supervised learning, we use a

fully supervised framework. That is, we exploit the Laplacian

Matrix in order to represent several Dimensionality Reduc-

tion Criteria that enhance discrimination and/or generaliza-

tion ability as it will be explained in the following.

Considering a linear SVM, where the decision function

takes the form

f(x) = w�x− b

the penalizer is written as

‖f‖2I = w�X�LXw

Therefore, we can define a supervised SVM as follows

[7]:

min
w,b,ξ

1

2
‖w‖22 + C

n∑

i=1

ξi +
λ

2
w�X�LXw

s.t. yi(w
�xi − b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(15)

where λ is a trade off parameter between the two regulariza-

tion terms of w satisfying λ ≥ 0. The dual problem is formu-

lated as [7]:

max
α

α�e− 1

2
α�YX(I+ λX�LX)

−1
X�Yα

s.t. α�y = 0

0 ≤ αi ≤ C

(16)

where I ∈ R
d×d is the identity matrix and Y is defined as di-

agonal matrix with diag(Y) = y. For simplicity of notation

we define the matrix A = (I + λX�LX). The dual prob-

lem (16) corresponds to an SVM with a linear precomputed
kernel defined as

Q0 = XA−1X� (17)

This way we integrate assumptions about the underlying

graph structure of the data or the desired discriminant graph

embedding into the kernel matrix of the SVM.

The above concept can be easily extended into the non-

linear case using the kernel trick [1]. The kernel matrix can be

written as K = ΦΦ�, where Φ ∈ R
n×m is the matrix of the

mapped data points X ∈ X into a Hilbert spaceH through the

mapping φ : X → H and m is the unknown dimensionality

of the feature space. For non-linear projections, we define the

projection vector w ∈ R
m. Since this vector belong to R

m

(the column space of Φ), we can restrict this vector to be in

the range of Φ. Therefore, w can be represented as

w =
n∑

i=1

αiφ(xi) = Φ�α (18)

The decision function of a non-linear SVM has the form:

f(x) = w�φ(x)− b = α�ki − b (19)

where ki is the i-th column of the kernel matrix. The corre-

sponding regularization term becomes now:

‖f‖2I = α�KLKα (20)

then the supervised SVM can be defined as:

min
α,b,ξ

n∑

i=1

ξi +α�Kα+ λα�KLKα

s.t. yi(α
�ki − b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(21)

using the Lagrangian multipliers βi, ζi:

L(α, ξi, b,β, ζ) =

=
n∑

i=1

ξi +
1

2
α�(2K+ 2λKLKα)

−
n∑

i=1

βi(yi(α
�ki − b)− 1 + ξi)−

n∑

i=1

ζiξi

(22)

and by the KKT conditions we get:

∂L

∂b
= 0 =⇒

n∑

i=1

βiyi = 0

∂L

∂ξi
= 0 =⇒ 1− βi − ζi = 0

=⇒ 0 ≤ βi ≤ 1

Then the reduced Lagrange problem is formulated as:

L′(α,β) =

=
1

2
α�(2K+ 2λKLK)α−

n∑

i=1

βiyi(α
�ki − 1)

=
1

2
α�(2K+ 2λKLK)α−α�KYβ + e�β

(23)

Taking derivative of the reduced Lagrangian:

∂L′

∂α
= (2K+ 2λKLK)α−KYβ (24)

This implies that the unknown parameteres α are given by:

α∗ = (2I+ 2λLK)−1Yβ∗ (25)



Table 2. Rrecomputed Kernels Q1 definition

Kernel Q1

QC K(2I+ 2λ(I− 1
nee

�)K)−1

QW K(2I+ 2λ(I−∑c
k=1

1
nk

ekek�)K)−1

QB K(2I+ 2λ(
∑c

k=1
1
nk

ekek� − 1
nee

�)K)−1

QL K(2I+ 2λLLK)−1

QE K(2I+ 2λLEK)−1

where the β∗ can be found from the dual problem which is

formulated as [8]:

max
β

β�e− 1

2
β�YK(2I+ 2λLK)−1Yβ

s.t. β�y = 0

0 ≤ βi ≤ C

(26)

By defining the matrix B = (2I + 2λLK), with I ∈ R
n×n

the identity matrix, the new dual problem corresponds to a

quadratic optimization problem with a non-linear precom-
puted kernel defined as:

Q1 = KB−1 (27)

Fast algorithms for solving the above problem in the pri-

mal space and at the dual have been recently proposed in [9].

In Table 2 we show the formulation of the Q1 precomputed

kernels using various graph embeddings presented in Section

2.2. The above solution produces a non-linear SVM where

all the samples are support vectors. In order to overcome this

issue that renders the proposed non-linear solution computa-

tionally expensive we propose in the following the use of the

SVD for decomposing the kernel matrix.

The effect of the L matrix on the data is different for the

various graph embeddings. The SVM tries to maximize the

margin between the two classes, but the regularization param-

eter inserts an additional optimization problem that is defined

by the Laplacian matrix.

The PCA algorithm, projects the data in order to maxi-

mize their variance, but the (15) and (21) are defined as min-

imization problems so the QC precomputed kernel instead of

maximization, minimizes the variance of the projected sam-

ples keeping them well-separated due to the SVM constraints.

The matrix SW minimizes the interclass variance and SB

maximizes the distance between the classes, so as before, QW

precomputed kernel tries to minimize the interclass sparse-

ness and the QB to minimize the distance between the classes

centers respectively, under the constraints of class separability

given by the SVM formulation.

Furthermore, the algorithms LLE and Laplacian Eigen-

maps preserve similarities between the samples, by maximiz-

ing the nearest neighbor density. However, the QL and QE

Table 3. Characteristics of Benchmark Datasets
Dataset Library Samples Attributes Classes

Australian Statlog 690 14 2

Breast Cancer UCI 683 10 2

Diabetes UCI 768 8 2

German UCI 1000 24 2

Heart Statlog 270 13 2

Hepatitis UCI 155 19 2

Sonar UCI 208 60 2

Ionosphere UCI 351 34 2

Liver UCI 345 6 2

Transfusion UCI 768 8 2

kernels due to the minimization as mentioned before, try to

maximize the similarity inside the graph structure under the

separability constraints of SVM.

In conclusion, the proposed approach is a general frame-

work that allows for several different criteria on the graph

structure to be incorporated in the SVM solution. These cri-

teria should enforce similarity inside the classes and dissim-

ilarity between the classes which is already implied in terms

of margin maximization by the SVM constraints.

4. EXPERIMENTAL RESULTS

4.1. Benchmark Datasets

We compared our proposed GESVMs against the standard

Linear and RBF SVMs using 10 benchmark datasets from the

UCI and Statlog (http://archive.ics.uci.edu/
ml/) repositories. The characteristics of each dataset can be

seen in Table 3.

All the features of each dataset were scaled to the in-

terval [−1,+1]. To evaluate the test error we used 5-fold

Cross Validation. Additionaly, an inner 5-fold cross valida-

tion loop is performed on the training set of the external fold

to select the optimal regularization parameter λ from the grid

{0.1, 0.2, . . . , 10} with step of 0.1. The cost parameter of the

SVM was set in all cases to C = 100 and for the case of the

RBF SVM the width of the kernel was set to γ = 1. In Table

4 we present our experimental results for the linear SVM for

several graph embedding kernels and in Table 5 for the RBF

SVM with the various graph embedding non linear kernels.

From the results we can observe that GESVM obtain

in most of the cases better classification accuracy than the

standard SVM classifier. For the linear case, in 7 out of 10

datasets the proposed approach gives better performance and

in one case the linear SVM has better performance. However,

there is no clear winner among the different graph embedding

methods. This can be attributed to the internal graph structure

of each dataset.

In the non-linear case with the Q1 precomputed kernel,

we can see that the graph embedding methods, win 8 out of

10 datasets. Also here there is not a clear winner among the

methods, but we can observe that the QW precomputed ker-

nel has better classification accuracy than the classical SVM



Table 4. Benchmark results for the linear case with Q0 precomputed kernel.
Linear SVM QW QB QC QL QE

australian 85.36(1.63)% 85.51(1.58)% 85.36(1.63)% 85.51(1.58)% 84.64(2.52)% 85.51(1.58)%
breast 96.93(0.60)% 96.78(0.64)% 96.78(0.64)% 96.78(0.83)% 96.78(0.66)% 96.78(0.64)%

diabetes 76.82(2.97)% 77.21(2.62)% 76.95(2.39)% 76.69(2.62)% 76.82(2.97)% 76.82(3.13)%

german 76.20(1.60)% 77.20(1.10)% 77.10(0.96)% 76.80(1.44)% 76.70(1.48)% 76.40(1.02)%

heart 83.33(5.40)% 82.96(6.33)% 82.22(6.75)% 82.59(7.12)% 79.26(10.59)% 82.59(5.94)%

hepatitis 76.18(4.98)% 76.18(4.98)% 76.18(4.98)% 76.18(4.98)% 76.18(4.98)% 76.18(4.98)%
ionoshpere 87.18(3.03)% 87.75(4.23)% 85.75(3.58)% 88.61(3.76)% 85.70(3.45)% 88.33(3.37)%

liver 67.25(6.28)% 67.54(5.85)% 67.83(6.01)% 67.54(5.85)% 67.25(6.28)% 67.25(6.03)%

sonar 69.70(14.00)% 67.78(13.45)% 68.25(11.98)% 69.72(11.27)% 68.76(10.95)% 65.81(16.19)%

transfusion 76.34(0.52)% 76.20(0.28)% 76.34(0.52)% 76.20(0.28)% 76.34(0.52)% 76.20(0.28)%

Table 5. Benchmark results for the non-linear case with Q1 precomputed kernel.
RBF SVM QW QB QC QL QE

australian 78.10(2.79)% 79.12(2.11)% 78.69(2.54)% 78.98(1.93)% 82.61(1.69)% 84.49(2.41)%
breast 94.58(0.79)% 95.17(1.29)% 95.61(1.35)% 95.17(1.29)% 95.55(1.19)% 96.34(1.49)%

diabetes 71.35(1.59)% 71.87(1.32)% 71.22(1.56)% 71.35(1.64)% 73.30(1.58)% 73.04(1.77)%

german 70.70(1.68)% 60.10(3.97)% 59.60(3.49)% 59.60(3.49)% 69.60(2.95)% 59.50(3.69)%

heart 73.70(2.41)% 76.30(3.04)% 75.93(3.70)% 75.93(3.70)% 67.41(12.40)% 75.93(5.56)%

hepatitis 78.06(4.81)% 77.41(6.49)% 76.76(6.24)% 77.41(6.49)% 76.14(4.78)% 76.76(6.24)%

ionoshpere 92.31(2.62)% 92.60(2.77)% 91.18(2.77)% 90.89(2.98)% 90.82(2.56)% 90.32(2.98)%

liver 68.99(8.79)% 69.86(9.58)% 71.01(8.99)% 69.86(8.41)% 70.72(8.03)% 69.28(8.16)%

sonar 73.07(9.02)% 75.00(2.72)% 75.00(2.72)% 75.00(2.72)% 70.63(3.92)% 75.00(2.72)%
transfusion 77.95(2.58)% 78.88(3.78)% 78.75(4.05)% 78.75(4.07)% 78.88(4.36)% 78.48(4.00)%

in most of the problems, but not the maximum of all kernels.

A disadvantage of this type of precomputed kernel is that, it

is computationally expensive and also renders all the training

samples as support vectors due to (25)

5. CONCLUSION

In this paper we have proposed a novel classifier which com-

bines the Graph Embedding Framework and the SVM. We

added a new regularization term in the original SVM formu-

lation, based on the Graph Embedding. This term incorpo-

rates knowledge about the underlying distribution of the data

into the SVM optimization problem. The resulting dual cor-

responds to an original SVM with a new precomputed ker-

nel. We examined both the linear and the kernel version of

the SVM formulation. Experimental results on several bench-

mark datasets show that our method obtains improved classifi-

cation accuracy in comparison with the standard SVM. More-

over, the proposed framework allows for new algorithms to

be designed that define a graph structure to be imposed in the

SVM classifier.
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