Discriminant Non-negative Matrix Factorization
and Projected Gradients for Frontal Face
Verification.

Irene Kotsia, Stefanos Zafeiriou, and loannis Pitas

Aristotle University of Thessaloniki, Department of Informatics, Box 451, 54124,
Greece
{ekotsia,dralbert,pitas}@aiia.csd.auth.gr
http://wuw.aiia.csd.auth.gr

Abstract. A novel Discriminant Non-negative Matriz Factorization (DNMF)
method that uses projected gradients, is presented in this paper. The pro-
posed algorithm guarantees the algorithm’s convergence to a stationary
point, contrary to the methods introduced so far, that only ensure the
non-increasing behavior of the algorithm’s cost function. The proposed
algorithm employs some extra modifications that make the method more
suitable for classification tasks. The usefulness of the proposed technique

to the frontal face verification problem is also demonstrated.
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1 Introduction

Over the past few years, the Non-negative Matriz Factorization (NMF) algo-
rithm and its alternatives have been widely used, especially in facial image char-
acterization and representation problems [3]. NMF aims at representing a facial
image as a linear combination of basis images. Like Principal Component Anal-
ysis (PCA), NMF does not allow negative elements in either the basis images or
the representation coefficients used in the linear combination of the basis images,
thus representing the facial image only by additions of weighted basis images.
The nonnegativity constraints introduced correspond better to the intuitive no-
tion of combining facial parts to create a complete facial image.

In order to enhance the sparsity of NMF, many methods have been proposed
for its further extension to supervised alternatives by incorporating discriminant
constraints in the decomposition, the so-called DNMF or Fisher-NMF (FNMF)
methods [3]. The intuitive motivation behind DNMF methods is to extract bases
that correspond to discriminant facial regions and contain more discriminative
information about them. A procedure similar to the one followed in the NMF
decomposition [6] regarding the calculation of the update rules for the weights
and the basis images was also used in the DNMF decomposition [3].
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In this paper, a novel DNMF method is proposed that employs discriminant
constraints on the classification features and not on the representation coefhi-
cients. Projected gradient methods are used for the optimization procedure to
ensure that the limit point found will be a stationary point (similar methods
have been applied to NMF [5]). Frontal face verification experiments were con-
ducted and it has been demonstrated that the proposed method outperforms
the other discriminant non-negative methods.

2 Discriminant Non-Negative Matrix Factorization
Algorithms

2.1 Non-Negative Matrix Factorization

An image scanned row-wise is used to form a vector x = [r1...2zp|T for the
NMF algorithm. The basic idea behind NMF is to approximate the image x
by a linear combination of the basis images in Z € §R£ *M - whose coefficients
are the elements of h € %y such that x ~ Zh. Using the conventional least
squares formulation, the approximation error x &~ Zh is measured in terms of
L(x||Zh) £ ||x — Zh||? = 3_,(x; — [Zh];)?. Another way to measure the error of
the approximation is using the Kullback-Leibler (KL) divergence, K L(x||Zh) =
> oi(ziln [ZITL + [Zh]; — z;) [6] which is the most common error measure for all
DNMF methods [3]. A limitation of KL-divergence is that it requires both x; and
[Zh]; to be strictly positive (i.e., neither negative nor zero values are allowed).

In order to apply the NMF algorithm, the matrix X € %i *T' = [2;;] should
be constructed, where z;; is the i-th element of the j-th image vector. In other
words, the j-th column of X is the facial image x;. NMF aims at finding two
matrices Z € R} M = [2; 1] and H € RY*" = [hy, ;] such that:

X ~ ZH. (1)

After the NMF decomposition, the facial image x; can be written as x; ~ Zh;,
where h; is the j-th column of H. Thus, the columns of the matrix Z can
be considered as basis images and the vector h; as the corresponding weight
vector. The vector h; can be also considered as the projection of x; in a lower
dimensional space.

The defined cost for the decomposition (1) is the sum of all KL divergences
for all images in the database:

SCZ',‘
D(X||ZH) = Y KL(x,||Zh;) = (;cj m(ziﬂ) + ) zikhe - :cj> .

— Zi kP
J 2,7
(2)

The NMF factorization is the outcome of the following optimization problem:

aniIng(XHZH) subject to (3)

Zig >0, hy; >0, ZZ” =1, Vj.
i
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2.2 Discriminant Non-Negative Matrix Factorization

In order to formulate the DNMF algorithm, let the matrix X that contains all
the facial images be organized as follows. The j-th column of the database X is
the p-th image of the r-th image class. Thus, j = Z:;ll N; + p, where N; is the
cardinality of the image class i. The r-th image class could consist of one person’s
facial images, for face recognition and verification problems. The vector h; that
corresponds to the j-th column of the matrix H, is the coefficient vector for the p-
th facial image of the r-th class and will be denoted as n(pr) = [77272 e nf(:J)w]T. The

mean vector of the vectors n;” for the class 7 is denoted as (™) = [MY) o ,LLSCI)]T

and the mean of all classes as gt = [y ... uar]T. Then, the within-class scatter
matrix for the coeflicient vectors h; is defined as:

K N,
Suw=>_> (0 —puM)nl) — T (4)

r=1p=1

whereas the between-class scatter matrix is defined as:
K
Sp=> No(p" — p)(pn) — ). (5)
r=1

The matrix S,, defines the scatter of the sample vector coefficients around their
class mean. The dispersion of samples that belong to the same class around
their corresponding mean should be as small as possible. A convenient measure
for the dispersion of the samples is the trace of S,,. The matrix S, denotes the
between-class scatter matrix and defines the scatter of the mean vectors of all
classes around the global mean p. Each class must be as far as possible from the
other classes. Therefore, the trace of S should be as large as possible.

To formulate the DNMF method [3], discriminant constraints have been
incorporated in the NMF decomposition inspired by the minimization of the
Fisher’s criterion [3]. The DNMF cost function is given by:

Dy(X||ZH) = D(X||ZH) + 1t1[S,] — 6tr[Ss] (6)

where v and § are non-negative constants. The update rules that guarantee a
non-increasing behavior of (6) for the weights hi,; and the bases z;j, under
the constraints of (2), can be found in [3]. Unfortunately, the update rules only
guarantee a non-increasing behavior for (6) and do not ensure that the limit
point will be stationary.

3 Projected Gradient Methods for Discriminant
Non-Negative Matrix Factorization

Let E = X — ZH be the error signal of the decomposition. The modified opti-
mization problem should minimize:

Dy(X||ZH) = ||E|[% +7tr[S,] - 6tx[Sy], (7)
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under non-negativity constraints, where ||.||r is the Frobenius norm. The within-
class scatter matrix S,, and the between-scatter scatter matrix S; are defined
using the vectors X; = ZTx; and the definitions of the scatter matrices in (4)
and (5).

The minimization of (7) subject to nonnegative constraints yields the new
discriminant nonnegative decomposition. The new optimization problem is the
minimization of (7) subject to non-negative constraints for the weights matrix H
and the bases matrix Z. This optimization problem will be solved using projected
gradients in order to guarantee that the limit point will be stationary. In order
to find the limit point, two functions are defined:

fz(H) = Dy(X||ZH) and fu(Z) = Dp(X||ZH) (8)

by keeping Z and H fixed, respectively.
The projected gradient method used in this paper, successively optimizes two
subproblems [5]:
mzin fu(Z) subject to, z; >0, (9)

and
m}iln fz(H) subject to, hy; > 0. (10)

The method requires the calculation of the first and the second order gradients
of the two functions in (8):

Vfz(H) = ZT (ZH - X)
V2fz(H) = ZTZ
Vfu(Z) = (ZH — X)HT 4+ 4Vtr[S,] — 6Vtr[Sy)

z )
V2 fu(Z) = HHT + 4V2tr[S,] — 6V2tr[S).

The projected gradient DNMF method is an iterative method that is comprised
of two main phases. These two phases are iteratively repeated until the ending
condition is met or the number of iterations exceeds a given number. In the first
phase, an iterative procedure is followed for the optimization of (9), while in
the second phase, a similar procedure is followed for the optimization of (10). In
the beginning, the bases matrix Z(") and the weight matrix H(") are initialized
either randomly or by using structured initialization [7], in such a way that their
entries are nonnegative. The regularization parameters v and ¢ that are used to
balance the trade-off between accuracy of the approximation and discriminant
decomposition of the computed solution and their selection is typically problem
dependent.

3.1 Solving the Subproblem (9)

Consider the subproblem of optimizing with respect to Z, while keeping the
matrix H constant. The optimization is an iterative procedure that is repeated
until Z*) becomes a stationary point of (9). In every iteration, a proper step
size a; is required to update the matrix Z(*). When a proper update is found,
the stationarity condition is checked and, if met, the procedure stops.
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Update the matrix Z For a number of iterations ¢ = 1,2,... the following
updates are performed [5]:

Zt+) = p [z@) - atVfH(Z(t))} (12)

where a; = (89t and gy is the first non-negative integer such that:
Fu(ZED) = f(Z20) < o <fo(Z(t>), 7,(t4+1) _ z<t>> . (13)
The projection rule P[.] = max]., 0] refers to the elements of the matrix and

guarantees that the update will not contain any negative entries. The operator
(.,.) is the inner product between matrices defined as:

<A,B> = ZZai,jbi,j (14)

g

where [A]; ; = a;; and [B]; ; = b; ;. The condition (13) ensures the sufficient
decrease of the fi(Z) function values per iteration. Since the function fyg is
quadratic in terms of Z, the inequality (13) can be reformulated as:

1
(1=0) (Vfu(Z®), 2070 = 20) + 2 (20D — 20, V2 (24Y)) <0 (15)

which is the actual condition checked.

The search of a proper value for a; is the most time consuming procedure,
thus, as few iteration steps as possible are desired. Several procedures have been
proposed for the selection and update of the a; values [8]. The Algorithm 4 in
[5] has been used in our experiments and 3, o are chosen to be equal to 0.1 and
0.01 (0 < B <1,0< 0 < 1), respectively. The choice of ¢ has been thoroughly
studied in [5, 8]. During experiments it was observed that a smaller value of 3
reduces more aggressively the step size, but it may also result in a step size
that is too small. The search for a; is repeated until the point Z(*) becomes a
stationary point.

Check of Stationarity In this step it is checked whether or not in the limit
point the first order derivatives are close to zero (stationarity condition). A
commonly used condition to check the stationarity of a point is the following [8]:

IVP fa(ZO)Ir < ezllV fu(Z)]]r (16)

where V¥ f(Z) is the projected gradient for the constraint optimization prob-
lem defined as:

Via(@))ir i 2 >0

97 52k = { il 9 ],) 20 "

and 0 < ez < 1 is the predefined stopping tolerance. A very low ez (i.e., ez = 0)
leads to a termination after a large number of iterations. On the other hand, a
tolerance close to one will result in a premature iteration termination.
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3.2 Solving the Subproblem (10)

A similar procedure should be followed in order to find a stationary point for
the subproblem (10) while keeping fixed the matrix Z and optimizing in respect
of H. A value for a; is iteratively sought and the weight matrix is updated
according to:

HHD = p [H(t) — a,V fz(HD) (18)

until the function fz(H) value is sufficient decreased and the following inequality
holds (a, b):

(1-0) <v F2(H®) HEHD H(t)> +1 <H(t“) ~HO, V2 fZ(H<t+1>)> <0
) 9 s <~ U.
(19)
This procedure is repeated until the limit point H(*) is stationary. The station-
arity is checked using a similar criterion to (16), i.e.:

IV7 f2(HY)||p < en||V f2(HY)||r (20)

where ep is the predefined stopping tolerance for this subproblem.

3.3 Convergence Rule

The procedure followed for the minimization of the two subproblems, in Sections
3.1 and 3.2, is iteratively followed until the global convergence rule is met:

IV FEO) e + (97 @] < e (IVFED) e+ [TED)E)  (@1)

which checks the stationarity of the solution pair H®), Z(®).

4 Experimental Results

The proposed DNMF method will be denoted as Projected Gradient DNMF
(PGDNMEF) from now onwards. The experiments were conducted in the XM2VTS
database using the protocol described in [12]. The images were aligned semi-
automatically according to the eyes position of each facial image using the eye
coordinates. The facial images were down-scaled to a resolution of 64 x 64 pix-
els. Histogram equalization was used for the normalization of the facial image
luminance.

The XM2VTS database contains 295 subjects, 4 recording sessions and two
shots (repetitions) per recording session. It provides two experimental setups
namely, Configuration I and Configuration II [12]. Each configuration is divided
into three different sets: the training set, the evaluation set and the test set.
The training set is used to create client and impostor models for each person.
The evaluation set is used to learn the verification decision thresholds. In case of
multimodal systems, the evaluation set is also used to train the fusion manager
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[12]. For both configurations the training set has 200 clients, 25 evaluation im-
postors and 70 test impostors. The two configurations differ in the distribution
of client training and client evaluation data. For additional details concerning
the XM2VTS database an interested reader can refer to [12].

The experimental procedure followed was the one also used in [3]. For com-
parison reasons the same methodology using the Configuration I of the XM2VTS
database was used. The performance of the algorithms is quoted by the Equal
Error Rate (EER) which is the scalar figure of merit that is often used to judge
the performance of a verification algorithm. An interested reader may refer to
[12, 3] for more details concerning the XM2VTS protocol and the experimental
procedure followed. In Figure 1, the verification results are shown for the vari-
ous tested approaches, NMF [6], LNMF [11], DNMF [3], Class Specific DNMF
(3], PCA [9], PCA plus LDA [10] and the proposed PGDNMF. EER is ploted
versus the dimensionality of the new lower dimension space. As can be seen, the
proposed PGDNMF algorithm outperforms (giving a best EER = 2.0%) all the
other part-based approaches and PCA. The best performance of LDA has been
1.7% which very close to the best performance of PGDNMF.

0.16 T

NMF

A - LNMF

0.14f v —_ DNMF I

N --- CSDNMF

PN e PGDNMF

012\ . N ‘== FisherFaces(PCA+LDA)!|
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1 1 1 1 1
20 40 60 80 100 120 140 160 180
Feature Dimensionality

Fig. 1. EER for Configuration I of XM2VTS versus dimensionality.
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5 Conclusions

A novel DNMF method has been proposed based on projected gradients. The
incorporated discriminant constraints focus on the actual features used for clas-
sification and not on the weight vectors of the decomposition. Moreover, we have
applied projected gradients in order to assure that the limit point is stationary.
The proposed technique has been applied in supervised facial feature extrac-
tion for face verification, where it was shown that it outperforms several others
subspace methods.
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