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Abstract. A scene change detection method is presented in this paper,
which analyzes both auditory and visual information sources and ac-
counts for their inter-relations and coincidence to semantically identify
video scenes. Audio analysis focuses on the segmentation of the audio
source into three types of semantic primitives, i.e. silence, speech and
music. Further processing on speech segments aims at locating speaker
change instants. Video analysis attempts to segment the video source
into shots, without the segmentation being a�ected by camera pans,
zoom-ins/outs or signi�cantly high object motion. Results from single
source segmentation are in some cases suboptimal. Audio-visual interac-
tion achieves to either enhance single source �ndings or extract high level
semantic information. The aim of this paper is to identify semantically
meaningful video scenes by exploiting the temporal correlations of both
sources based on the observation that semantic changes are characterized
by signi�cant changes in both information sources. Experimentation has
been carried on a real TV serial sequence composed of many di�erent
scenes with plenty of commercials appearing in-between. The results are
proven to be rather promising.

1 Introduction

Content-based video parsing, indexing, search, browsing and retrieval have re-
cently grown to active research topics due to the enormous amount of unstruc-
tured video data available nowadays, the spread of its use as a data source in
many applications and the increasing diÆculty in its manipulation and retrieval
of the material of interest. The need for content-based indexing and coding has
been foreseen by ISO/MPEG that has introduced two new standards: MPEG-4
and MPEG-7 for coding and indexing, respectively [1].

In order to eÆciently index video data, one must �rstly semantically identify
video scenes. The term scene refers to one or more successive shots combined
together because they exhibit the same semantically meaningful concept, e.g. a
scene that addresses the same topic although many shots may be involved. The
term shot denotes a sequence of successive frames that corresponds to a single
camera start and end session. Scene characterization should be content- and



search-dependent. The task of semantic scene identi�cation is rather tedious
and no automatic approaches have been reported to date. Usually, low-level
processing of the visual data is initially undertaken. Shot boundary detection,
i.e., temporal segmentation, is performed and analysis of detected shots follows
[2, 3, 4]. Results are enhanced and higher level semantic information can be
extracted when other information sources are analyzed, such as aural or textual
ones [5, 6, 7, 8]. It is evident that semantic characterization can only be achieved
with annotator intervention or by imposing user-de�ned interaction rules and
domain knowledge.

A scene change detection method is presented in this paper which analyzes
both auditory and visual sources and accounts for their inter-relations and syn-
ergy to semantically identify video scenes. The audio source is analyzed and
segmented into three types of semantic primitives: silence, speech and music.
Further analysis on speech parts leads to the determination of speaker change
instants, without any knowledge on the number or the identity of speakers and
without any need for a training process. The video source is processed by a
combination of two shot boundary detection methods based on color frame and
color vector histogram di�erences in order to eÆciently detect shot boundaries
even under various edit e�ects and camera movement. Combination of the re-
sults extracted from single information sources leads to grouping a number of
successive shots into a scene according to whether they are in-between two suc-
cessive speaker change instants or the same music segment accompanies them,
or there are long duration silence segments before and after them. If further
speaker alternation is attempted, such scenes can also be partially identi�ed as
commercials or events or dialogue scenes. In Sect. 2, the tools for low-level audio
analysis and segmentation are summarized, while in Sect. 3, video segmentation
into shots is reported. In Sect. 4, scene identi�cation by combining both aural
and visual information based on interaction rules is presented. Simulation results
on a TV serial sequence of around 15 min duration containing many commercials
are reported in Sects. 5. Finally, conclusions are drawn in Sect. 6.

2 Audio Analysis

Audio analysis aims at segmenting the audio source into three types of semantic
primitives: silence, speech and music. Further processing on speech segments
attempts to locate speaker change instants. Segmentation and speaker change
identi�cation are achieved by low-level processing methods. In the sequel, the
term audio frame refers to the shortest in duration audio part used in short-time
audio analysis, whereas the term segment refers to a group of a variable number
of successive frames pre-classi�ed to one of the three prede�ned audio types.

Initially, silence detection is performed to identify silence periods and dis-
card them from subsequent analysis. Silence frames are audio frames of only
background noise with a relatively low energy level and high zero crossing rate
(ZCR) compared to other audio signal types. In order to distinguish silence from
other audio signal types, the average magnitude Mt and zero crossing rate Zt



functions of anM -sample audio frame xt(n), n = 0; : : : ;M�1, are exploited [9]:

Mt =

M�1X

k=0

jxt(k)j (1)

Zt =
1

2M

MX

k=1

jsgn(xt(k))� sgn(xt(k � 1))j (2)

t = 0; ::; N � 1, where N is the total number of audio frames. Non-overlapping
audio frames of 10msec duration are employed. A convenient approach to robust
speech-silence discrimination is end point detection [9], which determines the
beginning and end of words, phrases or sentences so that subsequent process-
ing is applied only on these segments. Average magnitude and ZCR thresholds
are chosen relative to the background noise characteristics of an apriori known
audio interval, its average magnitude and ZCR functions being Mt;n and Zt;n
respectively. The average magnitude thresholds used by endpoint detection are
set equal to:

Mthr;up = E[Mt]

Mthr;low = max(Mt;n) (3)

The ZCR threshold is set equal to: Zthr = max(Zt;n). Such a threshold selection
proves to be robust and endpoint detection is satisfactorily performed. Bound-
aries of words, phrases or entire sentences are well estimated, a useful outcome
that is subsequently exploited for audio segmentation and characterization.

Music detection is further performed to discriminate speech from music. Mu-
sic segments are audio parts having signi�cant high frequency content, high ZCR,
di�erent periodicity, compared to speech segments (voiced parts), and usually
long duration. The latter is attributed to the fact that music does not usually
exhibit silence periods between di�erent successive parts leading to a long audio
segment. Thus, in order to distinguish speech from music, four criteria are used:
an energy measure, the ZCR, a correlation measure in the frequency domain that
attempts to detect periodicity, and, �nally, segment duration. Energy, Mt, and
ZCR, Zt, values are evaluated by (1) and (2), respectively, on audio frames of 10
msec duration located inside the current segment Si, i = 1; : : : ; NS , where NS

is the total number of detected segments other than silence ones. Subsequently,
segment-based mean values and variances of Mt and Zt are estimated, i.e.:

�MSi
= E[Mtjt 2 Si] �ZSi = E[Ztjt 2 Si]

�2MSi

= E[(Mt � �MSi
)2] �2ZSi

= E[(Zt � �ZSi )
2]

(4)

Their quotient is considered more discriminative for recognizing music from
speech:

QMSi =
�MSi

�2MSi

(5)

QZSi =
�ZSi
�2ZSi

(6)



Because both long-term (segment-based) energy and ZCRmean values are higher
for music than speech. Besides, due to the existence of voiced and unvoiced
parts in speech, long-term variance values of speech segments are expected to
be higher than musical ones. In order to take advantage of the long duration
periodicity of music, a frequency-based correlation metric Ct is de�ned between
the magnitude spectrums of successive non-overlapping audio frames of 30msec
located in segment Si, i = 1; : : : ; NS :

Ct =
1

M

M�1X

k=0

jF(xt(k))j � jF(xt�1(k))j (7)

where F(:) denotes the Fourier transform operator. If the signal is periodic, xt
and xt�1 will have almost identical spectra, thus leading to a high correlation
value. Correlation is performed in frequency due to the fact that the Fourier
transform remains una�ected by time shifts. In the case of music, Ct is expected
to attain constantly large values within Si. On the other hand, speech, char-
acterized by both periodic (voiced) and aperiodic (unvoiced) parts, will have
alternating high and low values of Ct within Si. Thus, segment-based mean val-
ues of Ct, �CSi = E[Ctjt 2 Si] are considered to be adequately discriminative for
detecting music. �CSi is expected to be higher for music segments than speech
ones. Finally, the segment duration dSi , i = 1; : : : ; NS , is also employed. Each
of the metrics QMSi , QZSi , �CSi and dSi are individually good discriminators
of music. Global thresholding with thresholds:

TM = E[QMSi ] +
max(QMSi)�min(QMSi)

2
(8)

TZ =
7

8
E[QZSi ] (9)

TC = 2E[�CSi ] (10)

Td = 5sec (11)

respectively, leads to individual but suboptimal detection of music segments.
Combination of these results in order to enhance music detection is based on the
validity of the expression:

((QMSi > TM ) OR (dSi > Td)) OR ((QZSi > TZ) AND (�CSi > TC))
(12)

If (12) is true for a segment Si, then this segment is considered to be a music
segment. Otherwise, it is declared as a speech segment. It is noted that audio
segments, that may contain both speech and music, are expected to be classi�ed
according to the most dominant type.

Speech segments are further analyzed in an attempt to locate speaker change
instants. In order to do that, low-level feature vectors are �rstly extracted from
voiced pre-classi�ed frames only [9], located inside a speech segment. Voiced-
unvoiced discrimination is based on the fact that unvoiced speech sounds exhibit
signi�cant high frequency content in contrast to voiced ones. Thus, the energy



distribution of the frame signal is evaluated in the lower and upper frequency
bands (the boundary is set at 2kHz with a sampling rate of 11kHz). High to
low energy ratio values greater than 0.25 imply unvoiced sounds, that are not
processed further. For audio feature extraction in voiced frames, the speech signal
is initially pre-emphasized by an FIR �lter with transfer function H(z) = 1 �
0:95z�1. Speech frames are used of 30msec duration each with an overlap of
20msec with each other. Each frame is windowed by a Hamming window of size
M . Finally, the mel-frequency cepstrum coeÆcients (MFCC), c = fck; k 2 [1; p]g,
are extracted per audio frame [10]. p is the dimension of the audio feature vector.
The aim now is to locate speaker change instants used later on for enhancing
scene boundary detection. In order to do that, �rstly feature vectors of successive
K speech segments SK0

; : : : ; SK0+K , are grouped together to form sequences of
feature vectors of the form [11]:

X = fc1; : : : ; cLSK0| {z }
SK0

; c1; : : : ; cLSK1| {z }
SK0+1

; : : : ; c1; : : : ; cLSK0+K| {z }
SK0+K

g (13)

Grouping is performed on the basis of the total duration of the grouped speech
segments. This is expected to be equal or greater than 2sec, when assuming that
only one speaker is talking. Consecutive sequences X and Y of feature vectors
of the form (13), with Y composed of K 0 speech segments and de�ned by:

Y = fc1; : : : ; cLSK0+K+1| {z }
SK0+K+1

; : : : ; c1; : : : ; cLS
K0+K+K

0| {z }
SK0+K+K0

g (14)

are considered, having a common boundary at the end of SK0+K and the beggin-
ing of SK0+K+1. The similarity of these two sequences is investigated by �rstly
evaluating their mean vectors, �X , �Y , and their covariance matrices, �X , �Y ,
and then de�ning the following distance metric:

Dt(X;Y ) = (�X � �Y )�
�1
X (�X � �Y )

T + (�Y � �X)�
�1
Y (�Y � �X)

T (15)

Dt is evaluated for the next pairs of sequences X , Y , until all speech segments
have been used. The immediate next pair is constructed by shifting the X se-
quence by one segment, i.e. starting at SK0+1, and re-evaluating numbers K
and K 0, so that the constraint on total duration is met. This approach is based
on the observation that a speaker can be suÆciently modeled by the covariance
matrix of feature vectors extracted from his utterances. Furthermore, the covari-
ance matrices evaluated on feature vectors coming from utterances of the same
speaker are expected to be identical. Adaptive thresholding follows to locate
speaker change instants. Local mean values on a 1d temporal window W of size
NW are obtained, without considering the value of Dt at the current location t0:

Dm = E[Dtjt2W;t6=t0 ]: (16)

Dt0 is examined to specify whether it is the maximum value of those ones inside
the temporal window (possibility of a speaker change instant at t0). If this is



the case and Dt0=Dm � �, where � is a constant controlling the strictness of
thresholding, a speaker change instant is detected at t0. Speaker change instants
are a clue for shot or even scene breaks. The method may be further investigated
to identify speaker alternation and identify dialogue shots/scenes.

3 Video Analysis

Video analysis involves the temporal segmentation of the video source into shots.
Shot boundary detection is performed by combining distance metrics produced
by two di�erent shot boundary detection methods. Such a dual mode approach
is expected to lead to enhanced shot boundary detection results even under
signi�cant camera or object movement or camera e�ects, thus overcoming the
drawbacks of the single modalities in some cases.

The �rst method estimates color frame di�erences between successive frames.
Color di�erences, FD(t), are de�ned by:

FDt =
1

3NX �NY

X
x

jjI(x; t) � I(x; t� 1)jj1 (17)

where I(x; t) = [Ir(x; t)Ig(x; t)Ib(x; t)]
T represents the vector-valued pixel in-

tensity function composed of the three color components: Ir(x; t), Ig(x; t) and
Ib(x; t). By jj:jj1 the L1-vector norm metric is denoted. x = (x; y) spans the spa-
tial dimensions of the sequence (each frame is of size NX �NY ) whereas t spans
its temporal one. Frame di�erencing is computationally intensive but seldom any
limitations on the processing time are imposed when the task is performed o�-
line. In order to detect possible shot breaks, the adaptive thresholding approach
used for detecting speaker change instants in Sect. 2 is adopted. Such window-
based thresholding o�ers the means of adaptive thresholding according to local
content and proves 
exible and eÆcient in gradual camera movements, signi�-
cantly abrupt object or camera movements, and simple edit e�ects as zoom-ins
and outs (no false positives, over-segmentation is avoided). Abrupt changes are
directly recognised.

The second method evaluates color vector histograms of successive frames
and computes their bin-wise di�erences. Summation over all bins leads to the
metric that is used for shot break detection. Histogram-based methods are robust
to camera as well as to object motion. Furthermore, color histograms are invari-
ant under translation and rotation about the view axis and change only slowly
under change of view angle, change in scale, and occlusion. However, histograms
are very sensitive to shot illumination changes. To overcome this problem and
make the method more robust, our approach operates in the HLS color space and
ignores luminance information. Thus, instead of using HLS vector histograms
(3-valued vector histograms), the method uses HS vector ones (2-valued vector
histograms). Luminance conveys information only about illumination intensity
changes, while all color information is found in the hue and saturation domain.
Usually, hue contains most of the color information. Saturation is examined and



used to determine which regions of the image are achromatic. In order to evalu-
ate HS vector histograms, the hue range [0o; 360o] is divided in 32 equally-spaced
bins hi, i = 1; : : : ; 32, and the saturation range [0; 1] in 8 equally-spaced bins sj ,
j = 1; : : : ; 8. Vector bins are constructed by considering all possible pairs of the
scalar hue and saturation bins, leading thus to a total number of 256 vector bins
hsk = (hi; sj), k = 1; : : : ; 256. Such an approach translates to a 256 uniform
color quantization for each frame. The color vector bin-wise histogram H(hsk; t)
for frame t is computed by counting all pixels having hue and saturation val-
ues lying inside the considered vector bin hsk and dividing by the total number
of frame pixels. The histogram di�erences, HDt, are then computed for every
frame pair (t� 1; t), by:

HDt =
1

NX �NY

256X

k=1

ln(jjH(hsk; t)�H(hsk; t� 1)jj1) (18)

where k is the vector bin index. By jj � jj1, the L1-vector norm metric is denoted.
Each frame is of size NX � NY and t is a temporal spatial dimension of the
sequence. Histogram di�erencing is computationally intensive. In order to detect
possible shot breaks, our approach �rstly examines the validity of the expression:

2 �E[HDt] �
max(HDt)�min(HDt)

2
: (19)

If it is true, then the sequence is composed by a unique shot without any shot
breaks. In the opposite case, the adaptive thresholding technique introduced for
detecting speaker change instants is also employed here, leading to eÆcient shot
break detection. Abrupt changes are directly recognized, but the method is also
satisfactorily eÆcient with smooth changes between di�erent shots.

However, both frame di�erence and color vector histogram based methods,
employed separately, exhibit limited performance, than when combined together.
Thus, fusion of single case outcomes is proposed. Speci�cally, the di�erence met-
rics (17) and (18) are multiplied to lead to an overall metric:

ODt = FDt �HDt (20)

that is adaptively thresholded later on for shot cut detection. Despite its sim-
plicity, such multiplication ampli�es peaks of the single case metrics, possibly
corresponding to shot cuts, while it lowers signi�cantly the remaining values.
The same adaptive thresholding method is employed here as well, leading to en-
hanced detection compared to the single case approaches. Strong object motion
or signi�cant camera movement, edit e�ects, like zoom ins-outs, and in some
cases dissolves (dominant in commercials) are dealt with. Over-segmentation
never occurs.

4 Audio-Visual Interaction: Scene Boundary Detection

and Partial Scene Identi�cation

Our aim is to group successive shots together into semantically meaningful scenes
based on both visual and aural clues and using interaction rules. Multimodal



interaction can serve two purposes: (a) enhance the \content �ndings" of one
source by using similar content knowledge extracted from the other source(s),
(b) o�er a more detailed content description about the same video instances
by combining the content descriptors (semantic primitives) of all data sources
based on interaction rules and coincidence concepts. Temporal coincidence due
to the temporal nature of video data is a very convenient tool for multimodal
interaction.

The combination of the results extracted from the single information sources
leads to the grouping of a number of successive shots into a scene according to a
number of imposed constraints and interaction rules. It is noted here that, given
the results of the presented aural and visual segmentation algorithms, only scene
boundaries are determined, while scene charecterization, e.g dialogue scene, can
only be partially performed in some cases. Further analysis on those and on
additional rules may lead to overall scene characterization. Shot grouping into
scenes and scene boundary determination is performed in our case when the
same audio type (music or speaker) characterizes successive shots. Partial scene
identi�cation is done according to the following concepts:

{ commercials are identi�ed by their background music and the many, short
in duration, shots that they have.

{ dialogue scenes can be identi�ed by the high speaker alternation rate exhib-
ited inside the scene.

5 Simulation Results

Experimentation has been carried on several real TV sequences having many
commercials in-between, containing many shots, characterized by signi�cant edit
e�ects like zoom-ins/outs and dissolves, abrupt camera movement and signi�cant
motion inside single shots. We shall present here a representative case of a video
sequence of approximately 12 min duration that has been digitized with a frame
rate of 25fps at QCIF resolution. The audio track is a mixture of silence, speech,
music and, in some cases, miscellaneous sounds. The audio signal has been sam-
pled at 11kHz and each sample is a 16bit signed integer. In the sequel, �rstly the
performance of the various aural and visual analysis tools presented in Sects. 2
and 3 will be investigated. Then, scene change detection will be examined and
partial scene characterization will be attempted.

In order to evaluate the performance of the audio segmentation techniques,
the following performance measures have been de�ned:

{ Detection ratio: the % ratio of the total duration of correctly detected in-
stances versus that of the actual ones,

{ False alarm ratio: the % ratio of the total duration of falsely detected in-
stances versus that of the actual ones,

{ False rejection ratio: the % ratio of the total duration of missed detections
versus that of the actual ones,



focusing initially on the performance of the aural analysis tools. Thus, silence
detection exhibits a remarkable performance of 100% detection ratio and 0%
false rejection ratio, achieving to locate entire words, phrases or sentences. Rare
occasions of unvoiced speech frames being classi�ed as silence frames have only
been observed leading to a false alarm ratio of 3.57%. There was no case of
silence being classi�ed as any other kind of audio types searched for. Music de-
tection exhibits 96.9% detection ratio, 3.1% false rejection ratio, because some
music segments of short duration are being confused as speech. It has 7.11%
false alarm ratio, because it confuses some speech segments as music ones. On
the other hand, speech detection is characterized by 86.2% detection ratio, 13.8%
false rejection ratio and 2.4% false alarm ratio by mistaking music segments as
speech. Finally, speaker change instant detection attains a suboptimal perfor-
mance mainly attributed to the fact that covariance matrices and their inverse
ones are insuÆciently evaluated given a limited number of feature vectors ex-
tracted from 2sec duration segments. However, the use of bigger audio segments
would imply that the same speaker is speaking during a longer duration, which
would be long in many cases. Speaker change instants are evaluated with a detec-
tion accuracy of 62.8%. We have 30.23% false detections, while missed detections
are of a percentage of 34.89%. Enhancement of this method may be achieved by
simultaneously considering other similarity measures as well, as shown in [11].
Despite, however, of the suboptimal performance of speaker change instants de-
tection, their use during audio-visual interaction for scene boundary detection
leads to a satisfactory outcome, in combination with the other segmentation
results.

In order to evaluate the performance of the visual segmentation methods,
that is, the shot boundary detection methods presented in Sect. 3, the following
performance criteria are used [2]:

Recall =
relevant correctly retrieved shots

all relevant shots
=

Nc

Nc +Nm

(21)

Precision =
relevant correctly retrieved shots

all retrieved shots
=

Nc

Nc +Nf

(22)

where Nc denotes the number of correctly detected shots, Nm is the number of
missed ones and Nf is the number of falsely detected ones. For comparison pur-
poses and to illustrate the strength of combining di�erent methods and fusing
results, the above criteria are also measured for the single shot detection meth-
ods presented in Sect. 3. Results for the single cases as well as the combined
one are presented in Table 1. Adaptive thresholding that leads to the decision
about shot boundaries is performed using two di�erent lengths for the local win-
dows: W = 3 and W = 5. It can be observed that the combined method attains
the best results for W = 5. No false detections are made and the missed ones
are rather few even under dissolve camera e�ects. The color vector histogram
di�erence method is inferior in performance compared to the color frame di�er-
ence method because histograms do not account for spatial color localization.
However, the histogram approach is better under illumination changes. To il-
lustrate the discriminative power of all temporal di�erence metrics considered



Table 1. Recall and Precision values achieved by the Shot Boundary Detection meth-
ods.

Method W = 3 W = 5

Recall Precision Recall Precision

Color Frame Di�erence 0.7047 0.5866 0.8456 0.7975
Color Vector Histogram Di�erence 0.3356 0.2155 0.5705 0.4271
Combined Method 0.9329 0.9858 0.9396 1.0

in the shot cut detection methods, i.e., the color frame di�erence metric FDt,
the color vector histogram di�erence metric HDt and the combined di�erence
metric ODt, Fig. 1 is given, where parts of these temporal di�erence metrics
are shown. One can easily observe how more easily distinguishable are peaks in
the third plot, even in parts of the video sequence where a lot of action and
movement is dominant, and how less varying are the rest values.
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Fig. 1. Evaluated 1d temporal di�erence metrics: FDt (top plot), HDt middle plot,
ODt bottom plot, for a certain temporal part of the input sequence.

Finally, the performance of the method according to scene boundary deter-
mination is investigated. The sequence under study contains 18 di�erent scenes
being either dialogue ones, or action ones, or commercials or the serial logo



displays. During boundary detection, those shots that exhibit the same speaker
speaking or the same music part are combined together into a scene. The bound-
aries of the scenes are further extended according to shot boundaries. For exam-
ple, if the same speaker is found to be speaking during frames 100 and 200, while
shot boundaries have been detected to exist to frames 85 and 223, then scene
boundaries are further extended to those, based on the enhanced performance
of our shot boundary detection. Cases have been observed that extent scene
boundaries to even a di�erent speaker or music segment. Thus, dialogues may
be identi�ed if the speaker changing points in a scene are rather high. Results
show that 13 out of 18 scenes are correctly detected, 12 are false detections (an
actual scene is recognized as more than one due to the non-overlapping of speaker
boundaries, music boundaries and shot boundaries), while 5 scene boundaries
are missed. The performance is good considering that simple rules are imposed
for scene boundary detection. Further investigation for scene characterization
as well as incorporation of other analysis tools to de�ne more semantic primi-
tives and enhancement of methods attaining a suboptimal performance will be
undertaken.

6 Conclusions

Content analysis and indexing systems o�er a 
exible and eÆcient tool for further
video retrieval and browsing, especially now that distributed digital multimedia
libraries have become essential. When such tasks combine semantic information
from di�erent data sources (auditory, visual, textual) through multimodal in-
teraction concepts, enhanced scene cut detection and identi�cation is possible.
In this paper, a scene boundary detection method has been presented that at-
tains promising performance. Both aural and visual sources are analyzed and
segmented. The audio types used are speech, silence and music. Video segmen-
tation into shots is performed by a remarkably eÆcient method that combines
metrics used by the two distinct approaches. Interaction of the single source seg-
mentation results leads to the determination of scene boundaries and the partial
scene characterization.
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