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Abstract. In recent years, electricity generated from renewable energy
sources has become a significant contributor to power supply systems
over the world. Wind is one of the most important renewable energy
sources, thus accurate wind energy prediction is a vital component of
the management and operation of electric grids. This paper proposes a
novel method for wind energy forecasting, which relies on a novel variant
of the scaled-dot product attention mechanism, for exploring relations
between the generated energy and a set of multiple-location weather
forecasts/measurements. The conducted experimental evaluation on a
dataset consisting of the hourly generated wind energy in Greece along
with hourly weather forecasts for 18 different locations, demonstrated
that the proposed approach outperforms competitive methods.
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1 Introduction

Electricity generated from renewable energy sources, has been proven an effec-
tive solution against the energy shortage and the environmental pollution caused
by conventional (e.g. fossil fuels) energy production methods. Wind energy is
one of the most important renewable energy sources. However, wind energy is a
highly fluctuating resource, mainly due to the respective unpredictable nature of
weather conditions, mainly wind speed and direction. Accurate wind energy pre-
diction is vital for lowering the impact of uncertainty, thus achieving a smoother
integration of the respective energy sources (wind farms/parks) into the grid.

Most approaches for wind energy generation prediction can be classified based
on either the applied methodology or the time horizon of the prediction [4]. Based
on the predictive horizon, the methods are usually classified into the following
four categories:

– Very short-term (up to 30 minutes) forecasting
– Short-term (30 minutes to 6 hours) forecasting
– Medium-term (6 hours to 1 day) forecasting
– Long-term (1 day to a month) forecasting

Regarding the applied methodology, wind energy prediction methods are
categorized as physical or statistical. The first, explore the physical relations
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between the wind speed, climate conditions, topological information and the
energy generated from the corresponding wind power plant. Usually, physical
models [2] [19] rely on numerical weather prediction models (NWP) that simulate
atmospheric physics by utilizing boundary conditions and physical laws, in order
to determine wind speed. The predicted wind speed is then used along with the
related wind turbine power curve, usually provided by the turbine manufacturer,
in order to predict the generated wind energy. Physical models are generally
suitable for long-term wind energy forecasting, but their short-term precision
remains low.

Statistical models/approaches [18], [6] are more appropriate for short-term
wind energy prediction compared to physical models. Their aim is not to de-
scribe the physical steps involved in the wind power conversion process, but to
directly obtain wind energy predictions, by exploring statistical relations between
historical wind energy data and other relevant input data. A sub-class of sta-
tistical models are Deep Learning (DL) based methods. In recent years, several
DL-based methods, including approaches utilizing convolutional neural networks
(CNNs) [17] [20], autoencoders [16], recurrent neural networks (RNNs) [10] and
spatio-temporal attention-based networks [11], have been proposed as suitable
solutions for wind energy forecasting.

In [17], the authors mapped data collected from wind turbines into a grid
space, which they called scene. The scene time series is a multi-channel image,
which represents the spatio-temporal characteristics of wind in a certain area and
time. Therefore, they developed a DL model based on CNN to extract features
from these images, in order to predict the generated energy. The results showed
that the proposed model achieves better accuracy than other existing methods.
The authors in [11] proposed a sequence-to-sequence model for multi-step-ahead
wind power forecasting, namely prediction of multiple future wind power values.
The model architecture consists of two groups of Gated Recurrent Units (GRU)
blocks, which work as encoder and decoder. The authors proposed the Attention-
based GRU (AGRU) for embedding the task of correlating different forecasting
steps by hidden activations of GRU blocks. The AGRU model achieved top per-
formance against other competitive wind energy forecasting methods. In [13],
the authors modified the N-BEATS [12] model towards making it suitable for
the f wind energy forecasting task and proposed a loss function capable to con-
front the issue of forecast bias. The method, mostly evaluated on very-short
term wind energy prediction datasets, was able to compete against other state-
of-the-art approaches and even outperform them in terms of accuracy in most
cases. In [20], the authors proposed a DL-based architecture, based on Temporal
Convolutional Networks (TCNs) for short-term wind energy prediction. An ex-
perimental evaluation of the method on a dataset consisting of 5000 hourly wind
power and meteorological data samples collected from a single wind energy power
plant, showed promising results against the competitive methods. In [16] the au-
thors proposed an architecture named SIRAE (Staked Independently Recurrent
Auto-Encoder), suitable for ultra-short wind energy forecasting. According to
the authors, this approach can accommodate a large volume of data in an effi-
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cient manner while also overcoming the effects of random changes in the natural
environment. To verify the effectiveness and stability of SIRAE, two comparative
experiments, in which it outperformed several popular models, were conducted.
In [10], the authors proposed DWT_LSTM, a short-term wind energy forecast-
ing method based on Discrete Wavelet Transform (DWT) and Long Short-Term
Memory (LSTM) networks. The method adopts a divide and conquer strategy,
in which DWT is used to decompose original wind power data into sub-signals,
while several independent LSTMs are employed to approximate the temporal
dynamic behaviors of these sub-signals. The proposed method achieved top pre-
diction accuracy rates against other state-of-the-art methods.

(a) Scaled Dot-Product
Attention

(b) Multi-kernel convolutional scaled dot-product
attention.

Fig. 1: (a): Scaled Dot-Product Attention, (b): the novel Multi-kernel convolu-
tional scaled dot-product attention. ci denotes the i-th convolutional kernel size,
employed in the temporal domain whereas N denotes the number of convolu-
tional kernels.

The method proposed in this paper relies on the scaled dot-product atten-
tion mechanism, initially proposed in [15]. Several methods [9] in the relevant
literature have applied this mechanism in time-series forecasting for exploring
temporal dependencies. More recently, spatio-temporal attention networks [3]
have been introduced to wind energy forecasting, aiming to predict the gener-
ated energy of multiple, spatially neighboring, wind farms. Compared to methods
in the relevant literature, our approach provides the following contributions:

– Utilizes past and future wind-related weather measurements/forecasts from
multiple locations, aiming to explore temporal patterns between the time
instances in the past and prediction windows. In addition, the method is
able to explore pseudo-spatial relations between the energy generation loca-
tion/region and the multiple locations of the weather measurements/forecasts,
aiming to find how the weather in each of the locations for which weather
data are available affects the energy generation prediction in the region under
study. To achieve this, the method doesn’t rely on any spatial information
(e.g., geographic coordinates, or geographic distances) as input.



4 C. Symeonidis and N. Nikolaidis

– Proposes a variant of scaled dot-product attention, which employs causal
convolutions of multiple kernel sizes, for exploring context-based similari-
ties, instead of point-based similarities, as proposed in [15]. To the best of
our knowledge, this approach is novel. Indeed, although a similar approach
has been proposed in [8], the corresponding authors employed Causal Con-
volutions with single sized kernels.

– Achieves top results, compared to SoA time-series forecasting methods, on a
dataset suitable for wind energy generation prediction in Greece at hour-level
resolution.

2 Proposed Method

2.1 Problem Statement and Notations

The problem of wind energy forecasting that is addressed in this paper can be
formulated as:

Êf = g(Eh,Wh,Wf ) (1)

In this equation Eh ∈ R1×H×1 corresponds to the past/history (h: history) wind
energy measurements of a single region or power plant, H being the size of the
past time window. Moreover, Wh ∈ RB×H×D

wh corresponds to past weather
measurements which are provided for B distinct locations or regions and Dwh

is the number of input weather variables, for the past. Also, Wf ∈ RB×F×D
wf

corresponds to weather forecasts (predictions in the future), where F is the size
of the future time window and Dwf is the number of input weather variables,
for the future. Finally, Ê

f
∈ R1×F×1 corresponds to the wind energy predictions

that are generated by the method for the region of interest.
In short, given past energy measurements for a region or location and wind-

related weather data from B distinct locations, our aim is to find how the energy
generation is related to the weather on each of the B locations. Once those
pseudo-spatial relations are estimated, wind energy predictions can be obtained
by exploring temporal patterns between the past weather measurements and
weather forecasts.

Adopting the typical attention mechanism [14], the single-time step predic-
tion êf , namely one of the elements of Ê

f
= [êf1 , ..., ê

f
F ] can be defined as:

êf = CT
H∑
j=1

αje
h,r
j

where
H∑
j=0

αj = 1

(2)

In the above formulas, ααα ∈ R1×H corresponds to the attention weights,
eh,rj ∈ R1×D

eh,r corresponds to the hidden representations (r: representations) of
past energy measurements at the jth time instance in the past. Deh,r corresponds
to size each hidden representation. Moreover, C ∈ RD

eh,r×1 are learnable pa-
rameters of a linear operator. In this formulation, wind energy is predicted based
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Fig. 2: The architecture of the proposed wind energy prediction method.
on the temporal patterns imposed by attention weights ααα, between the time step
being predicted and past energy measurements (more specifically their internal
representations) within the respective temporal window. It shall be noted that
a multi-time step prediction formulation would involve a matrix A ∈ R1×F×H

rather than ααα. Our objective is to explore, the previously described, pseudo-
spatial and temporal relations between Eh, Wh and Wf in order to efficiently
approximate A.

2.2 Multi-Kernel Convolutional Scaled Dot-Product Attention

The Scaled Dot-Product Attention, was presented in [15] and formulated as
follows:

Attention(Q,K,V) = MV, (3)

where

where M = softmax(
QKT

√
DK

) (4)

Q ∈ RNQ×DQ , K ∈ RNK×DQ and V ∈ RNK×DV are the queries, keys and
values respectively. Queries and keys have a dimension of DK , while values have
a dimension of DV . NQ is the number of queries while NK is the number of
keys and values. An illustration of the mechanism is depicted in Fig. 1a. Multi-
head attention was also proposed in [15], allowing various attention mechanisms,
including scaled dot-product attention, to run in parallel. To this end, instead
of performing a single attention computation on queries, keys, and values of size
DL, the authors proposed their transformation with N independently learned
linear projections. The attention computation is then performed, in parallel, on
those N projected queries, keys, and values. More specifically, the multi-head
attention module can be formulated as:

Multihead(Q,K,V) = [p1, ...,pN ]SO, (5)

pi = Attention(QSQ
i ,KSK

i ,VSV
i ). (6)

In this formulation, SQ
i ∈ RDL×DK , SK

i ∈ RDL×DK , SV
i ∈ RDL×DV , SO

i ∈
RNDV ×DL are projection parameter matrices, N is the number of heads, DK =
DV = DL

N , and the operator [...] implies concatenation.
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Fig. 3: The architecture of the core attention-based energy prediction module.

On the original formulation, the scaled dot-product attention was designed to
explore point-wise similarities between queries and keys. However, in most time-
series analysis tasks, information regarding the surrounding context of observed
points is vital for exploring patterns among the series. The authors in [8], were
able to employ causal convolutions of kernel size c to transform inputs into
queries and keys. Thus, local context was exploited in the query-key matching,
improving the way temporal patterns among the corresponding time series are
explored. The authors experimented with various values of c in order to find
the optimal one. To avoid selecting a specific kernel size, as well as for allowing
the method to detect patterns in various kernel sizes, we propose the multi-
kernel convolutional scaled dot-product attention. In our formulation, causal
convolutions with N different kernel sizes are applied on Q, K and V, resulting
in N heads. The scaled dot-product attention is computed separately for each
head. Layer normalization is then applied to the output of each head. Finally, the
outputs are concatenated and projected, resulting in the final values, as depicted
in Fig. 1b.
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Fig. 4: The temporal attention mechanism captures correlations in weather fore-
casts between the time instances in the prediction window and the history (past)
window. In this example, the number of weather forecasts/measurements B is
set to 3.

2.3 Model Architecture
The overall architecture of our proposed method is depicted on Fig 2. The
method receives as input Eh, Wh and Wf , and process those modalities through
linear layers with the Rectified Linear Unit (ReLU) as activation function. Then,
the hidden representations of all modality are fed into the Attention-based En-
ergy Prediction module. Its architecture is depicted on Fig 3. The module is
motivated by the typical attention mechanism, defined in Eq. 2, utilizing the
multi-kernel convolutional scaled dot-product attention, previously described in
Section 2.2. Its aim is to generate future energy representations, based on (i)
temporal relations within past and future weather predictions, (ii) pseudo-spatial
relations between the region of wind energy prediction and the locations of the
weather forecasts. The temporal relations are imposed by Atmp ∈ RN×B×F×H .
The formulation of Atmp involves a query-key matching of Wf,r and Wh,r.
An illustration of the described temporal attention mechanism is depicted on
Fig. 4. The pseudo-spatial relations are imposed by Asp ∈ RN×F×1×B and in
the query-key matching Eh,r and Wh,r are involved. Illustrations of the described
pseudo-spatial relations are depicted on Fig. 5. The final attention weights A
can be defined as:

A = u(Asp ⊗ u(Atmp)) (7)

where A ∈ RN×1×F×H and u(.) denotes a tensor reshaping function. In partic-
ular, element an,1,j,l of A is computed as:

an,1,l,j =

B∑
i=1

αsp
n,l,1,i · α

tmp
n,i,l,j

where
B∑
i=1

αsp
n,l,1,i = 1,

H∑
j=1

αtmp
n,i,l,j = 1, 1 ≤ l ≤ F , 1 ≤ j ≤ H, 1 ≤ n ≤ N

(8)

The output of the attention-based module are the hidden representations of
the wind energy values Ê

f,r
. Finally, a lineal layer is applied for generating the

wind energy predictions.
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Fig. 5: The pseudo-spatial attention mechanism captures correlations between
the generated energy and the multiple-location weather forecasts in the history
window. In this example, the number B of locations for which weather fore-
casts/measurements are available is set to 3.

3 Experimental Evaluation

3.1 Dataset Description

The dataset employed in the experimental evaluation was initially proposed in
[7]. It consists of (i) hourly wind energy generation data for Greece (the entire
country), collected by the European Network of Transmission System Operators
for Electricity1, and (ii) hourly wind-related weather data, which correspond to
18 separate locations in Greece, retrieved by the Storm Glass weather API 2.
The weather data consist of forecasts regarding the wind speed, wind direction
and gust. The dataset spans the period 2017-2020. The training set contains
data for the period 2017-2019, while the data from the final year form the test
set.

The provided wind energy generation values are not normalized/standardized
and no information is provided for wind energy generation bounds within regular
time intervals (e.g. per annum). Tab 1 depicts the large differences between var-
ious statistics of the generated energy at annual level. This is indeed a common
real-world issue, since the number of wind stations/turbines of a region changes
over time (usually increases due to the installation of new ones, as is obviously
the case for Greece) and no information regarding this number is provided at
1 https://transparency.entsoe.eu
2 ttps://stormglass.io/
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country level in regular intervals. A method employed to predict power genera-
tion under these circumstances must have a high generalization ability, and be
able to overcome such significant data distribution shifts. Being fair to the cor-
responding dataset split, wind energy data used as input were scaled explicitly
based on the minimum and maximum energy values of the training set. However,
the metrics used in the evaluation were computed on output data (predictions)
that were re-scaled on the min/max values of the overall dataset.

Table 1: Statistics derived from wind energy generation data (in MW) for Greece
in the period 2017-2020.

Year Mean Std. Median Max.
2017 482.312 336.052 369.0 1702.0
2018 554.554 384.459 466.0 1695.0
2019 662.747 457.254 545.0 2107.0
2020 849.010 595.726 696.0 2630.0

Based on this dataset, two evaluation/benchmarking scenarios were formed.
The first scenario assumes a forecast horizon of one hour and historic (past) data
availability of up to 120 hours. Weather data are available for both input (past
measurements, 120 measurements) and target (future forecasts) windows. Past
energy production measurements for 72 hours are provided as input, starting 48
hours prior to the target period. This 48-hour gap in past energy data is due
to the fact that measurements are not released immediately by the transmission
system operators, i.e. it reflects the real situation. The second scenario assumes
a 24-hour forecast horizon, in 1-hour intervals and data availability of up to 384
hours. In a similar fashion to the first scenario, weather data are available for
both input (past measurements, 384 measurements) and target (future forecasts,
24 values) windows. Past energy production measurements for 336 hours are
provided as input, starting 48 hours prior to the target period (48-hour gap).

3.2 Baseline Methods

Three SoA time series forecasting methods were trained and evaluated on each
of the described wind energy prediction scenarios. The first employed method is
N-BEATS [12], implemented by [5]. Compared to the original method, the imple-
mented model can receive as input both historic wind energy measurements, as
well as historic wind-related weather data for the corresponding time instances.
This is accomplished by flattening the model inputs to a 1-D series.

The performance of a deterministic implementation of DeepTCN [1] was also
evaluated in our scenaria. In addition to the historic wind energy measurements,
we provide as input the historical wind-related weather data, since the method
allows the use of past covariates. Finally, an implementations of TFT [9] was
also employed in our experimental evaluation. Information regarding the type of
input covariates of each method is provided in Table 2. In particular, TFT and
our method are the only ones incorporating future weather forecasts as input.
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Aiming to achieve a fair comparison, the weather data from all 18 locations,
as well as weather data corresponding formed as an aggregated weather fore-
cast from those 18 locations, were fed as input covariates to the three baseline
methods. Furthermore, all four methods, including ours, were trained incorpo-
rating the 48-hour gap within the scenario specific prediction window (i.e., in
the first scenario the methods were trained using a 49 prediction window). How-
ever, the predictions corresponding to the 48-hour gap were excluded during the
evaluation process.

All methods, including our proposed method, were trained of 8 epochs. The
learning rate was initially set to 5×10−4 and it was decreased twice by multiply-
ing it with 0.1 at epochs 4 and 6, respectively. Regarding our proposed method,
the number of kernels N in the multi-kernel convolutional scaled dot-product
attention was set to 6, using 1, 3, 5, 9, 13 and 17 sized kernels. In addition,
Deh,r , Dwh,r , Dwf,r and Def,r were set to 66.

Table 2: Covariates used as input for each of the compared methods.

Method
Covariates

Past Weather
Measurements

Future Weather
Forecasts

N-BEATS [12] ✓
DeepTCN [1] ✓
TFT [9] ✓ ✓
Ours ✓ ✓

3.3 Experimental Results

This subsection presents the results of the forecasting experiments for each
method along with a commentary on the findings. To be consistent with the
literature [10] [20], Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) were used to measure the performance of the models. Each experiment
was executed four times, and the mean value and standard deviation are re-
ported.

Table 3: MAE and RMSE values for the two evaluation scenarios.

Method Scenario 1 Scenario 2
MAE RMSE MAE RMSE

N-BEATS 0.201 ± 0.003 0.262 ± 0.006 0.202 ± 0.002 0.262 ± 0.003
DeepTCN 0.189 ± 0.008 0.243 ± 0.017 0.226 ± 0.027 0.301 ± 0.030

TFT 0.113 ± 0.008 0.154 ± 0.012 0.118 ± 0.008 0.159 ± 0.012
Ours 0.103 ± 0.002 0.139 ± 0.003 0.085 ± 0.001 0.112 ± 0.003

Table 3 shows the MAE and RMSE of all compared methods for the two wind
energy prediction scenarios. In both scenarios, methods which employ future
weather forecasts as input covariates, i.e. TFT and the proposed method, demon-
strate significant performance gains. In both scenarios our proposed method
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achieved top results, compared to the three baseline methods. In particular,
more significant results were attained in the second scenario achieving mean
MAE and RMSE, among 4 experiments, of 0.085 and 0.112, respectively.

It is worth noting that the performance of our proposed method was better
in the second scenario, compared to the first, in all metrics. This behaviour is
exactly the opposite compared to the rest of the methods, where their perfor-
mances downgraded in the second scenario. The improved performance of the
proposed method, on a scenario in which data from a larger temporal window
were used as input, highlights that the implemented temporal attention-based
mechanism is able to effectively capture relations between distant samples within
the sequences. Future work will focus on conducting more experiments, in respect
to the size of input and prediction windows, as well as to extend the method,
aiming to process and predict wind energy time-series from multiple stations or
regions.

4 Conclusions

Energy generation from wind exhibits inherent uncertainties due to its inter-
mittent nature. The accurate wind energy prediction can assist its integration,
operation and management within the electric grids. This paper proposes a novel
wind energy forecasting method, which relies on a novel variant of the scaled-dot
product attention mechanism, for exploring relations between the generated en-
ergy and a set of multiple-location weather forecasts/measurements. The results
of the conducted preliminary experimental evaluation against SoA time-series
forecasting methods on a dataset consisting of the hourly generated wind energy
in Greece, highlighted the potential of the proposed method.
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