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Abstract—In recent years, the field of automated aerial cine-
matography has seen a significant increase in demand for real-
time 3D target geopositioning for motion and shot planning. To
this end, many of the existing cinematography plans require
the use of complex sensors that need to be equipped on the
subject or rely on external motion systems. This work addresses
this problem by combining monocular visual target detection
and tracking with a simple ground intersection model. Under
the assumption that the targets to be filmed typically stand
on the ground, 3D target localization is achieved by estimating
the direction and the norm of the look-at vector. The proposed
algorithm employs an error estimation model that accounts for
the error in detecting the bounding box, the height estimation
errors, and the uncertainties of the pitch and yaw angles.
This algorithm has been fully implemented in a heavy-lifting
aerial cinematography hexacopter, and its performance has been
evaluated through experimental flights. Results show that typical
errors are within 5 meters of absolute distance and 3 degrees of
angular error for distances to the target of around 100 meters.

Index Terms—target detection, aerial cinematography, 3D
geopositioning, monocular

I. INTRODUCTION

Aerial cinematography has become an increasingly popular
tool for capturing footage in a variety of media production
contexts, including sports events, commercials, and movies.
While manual operation offers a high degree of artistic con-
trol and the ability to achieve professional-looking shots,
recent advancements in autonomous technology have made it
possible to replicate these results through automated means.
The literature has identified and described visually pleasing
combinations of framing shot types and camera movements
[1]. A common thread among these descriptions is the need
for knowledge of the target’s 3D position in a world coordinate
system at all times. This requires the use of a target detection,
localization, and tracking system, particularly in unstructured
environments. It must be able to run in real-time, onboard
the UAV, and should not rely on external sensors. Recent
advances in computer vision techniques have emerged as a
highly efficient means of performing object detection and
tracking. By combining this technology with a pinhole camera
model and a fast 3D position estimation algorithm, a highly
efficient real-time object localization tool can be created for
short and medium-distance UAV cinematography and aerial
shot planning.

One of the most challenging aspects of aerial cinematogra-
phy is subject localization for shot planning. Several works

rely on motion-capture systems [2] or high-precision RTK
GPS [3]. In cases where subjects cannot carry heavy or
complex devices for tracking, the alternative must rely on
visual image detection. Some typical scenarios are outdoor
sports events (e.g. cycling and running) and search and rescue
missions. Image detection algorithms have been extensively
used for 3D position estimation in applications such as visual
odometry of field robots [4], underwater vehicle positioning
[5], and more recently in aerial cinematography [6].

A common approach to aerial cinematography using monoc-
ular cameras is based on visual servoing [7]. The main problem
of visual servoing is that once the camera loses track of the
subject, it is very challenging to recover. Therefore, a more
robust alternative consists on ray casting, where we obtain
3D target positions that can be used to relocate it. Given the
detection bounding box of the subject and using a ground
model, the intersection of the ray cast from the camera to the
bottom center of the bounding box with the ground model
provides the 3D coordinates of the subject [6].

Nevertheless, ray casting requires pixel-accurate bounding
boxes that are not easy to obtain. Modern state-of-the-art
performing deep learning-based transformer-based detectors
[8] or trackers [9], cannot be deployed in present onboard
computing units. Besides detection and tracking, ray casting
over complex ground models requires iterative solving, of-
ten unsuitable for real-time applications, since there is no
analytical solution to the ray intersection with an arbitrary
surface problem. Although the bibliography features the im-
plementation of this system, we have not been able to find
any information regarding accuracy, minimum and maximum
usable distances, or even error estimation.

In this paper, we propose a real-time algorithm for esti-
mating the 3D position of any object of interest based on
image detection and tracking. By exploiting and combining
the best practices in deep-learning-based visual detection and
tracking, we are able to extract reliable target detections on
the image plane in real time. Additionally, we provide a
model for estimating the uncertainty in position prediction,
considering factors such as bounding box selection, height,
and pitch angle errors. To evaluate the performance of the
proposed algorithm, we compare its results with actual data
collected from experimental flights. The results demonstrate a
high concordance between the estimated and actual positions.



II. METHODOLOGY

A. 2D Object detection and tracking

The first step of the proposed framework is to solve the
problem of localizing targets of interest in the 2D camera
coordinate system, in the form of rectangular Regions of
Interest (ROI), over the course of successive video frames.
Assuming that the filmed targets are standing still on the
ground, we will employ the middle point of the bottom part
of the bounding boxes (of the successive video frames), in
order to cast rays toward the camera, whose position in the
3D space is known from other sensors. This Section focuses
on how we extract those bounding boxes in real time.

Perhaps the most widely considered approach in embedded
applications is the deployment of fast object detectors, such as
the You Only Look Once (YOLO) series [10] or Single-Shot
Detector (SSD) [11]. One of the most important limitations
of detection-only approaches is they cannot easily generate
between-frame correspondences, i.e., it is not trivial to deduct
that the target detected in the previous frame is the same
as the one depicted in the next. Next, detectors are heavily
affected by environmental variance, related to camera motion,
vibrations, illumination changes due to sun, etc. Detectors
that are robust in such settings are transformer-based ones
[8], however, they typically are challenging to implement
in computationally and memory-constrained systems, such as
drones. Another approach that solves the above issues is to
employ visual object tracking methods. These methods are
typically significantly faster than detectors that can run on
CPU, e.g. correlation filter-based methods [12] or very fast on
GPU, if they are based on siamese neural architectures [13].
Trackers are generally more adaptable to their environmental
settings since they only learn to detect the target by using
examples from previously tracked frames, which tend to be
a lot more similar than a detection dataset where a detection
method might have been trained on. The main limitation of
tracking methods however is that they tend to be less accurate
than detectors in the regression task, i.e., identify the exact
proportions of the bounding box.

Inspired by [14], we have developed a complete Robot
Operating System (ROS)-based software that combines the
best of both worlds. The framework consists of 3 modules:
a detector, a tracker, and an auxiliary management module.
Operationally, the software works as follows: The management
module handles input/output and triggers the detection and
tracking modules. Given that there have been no previous
detections, the management module provides images to the
detection module. This operation is repeated until there are
output detections. If a target has been detected, the manage-
ment module uses the detected ROI to instantiate the tracking
module. Unless a certain quality threshold is not achieved or a
specific threshold of time (e.g., 25 frames) has been exceeded,
the outputs of the software module are given by the tracker
module. The tracker module always provides two outputs,
one bounding box prediction, and one tracking quality score
[15]. The acceptable quality threshold and the tracking time

windows are the system’s hyperparameters, which can be set
prior to a filming mission. The management module takes into
account the time and quality variables and decides whether to
re-employ the tracking module or ask for new detections from
the detection module. The methods used for the detection and
tracking task are described in the following subsections.

1) 2D target detection: Object detection is the task of
identifying and localizing object instances within an image,
formulated as a combined classification and regression prob-
lem. Specifically, given an image sample I, the detection
model ŷ = f(I; θ) learns a function parameterized by θ that
predicts (assuming only one object instance) an output vector
ŷ = [ŷ⊤

1 , ŷ
⊤
2 ] consisting of: (i) a class vector ŷ⊤

1 ∈ [0, 1]m,
corresponding to a set of classes C = {Ci = 1, . . . ,m} and
(ii) a region of interest parameter vector ŷ2 = [x, y, w, h]⊤

defining the corresponding object’s bounding box 2D coordi-
nates.

Since the proposed framework does not require detections
to take place in every single frame and is memory-allowed, we
implemented a fast transformer-base detector [16], which is the
state-of-the-art approach at the current period in general detec-
tion tasks. Such methods significantly outperform embedded-
computing oriented detectors like Yolo and SSD in standard
detection benchmarks, e.g., [17]. Inspired by the whitened
self-attention operation [16], we developed a transformer-
based detector that replaces the attention operation with a
linear multiplication, by introducing auxiliary (pre-computed)
matrices that perform a transformation that highlights known
or computed data properties, modeled in graph structures. In
particular, since we focus on detecting items that typically
appear vertically elongated, we emphasize on attention opera-
tion along the y-axis. To this end, we employ a graph structure
that connects vertical image patches with an increased weight.
Since this property remains the same across any image patch,
we can employ the same matrix for every possible given input
image. Then, the attention operation is reformulated as follows
[16]:

Z = σ

(
XΣ−1XT

√
n

)
XWV , (1)

where n is a scaling parameter, Σ = X⊤LX + rI is
matrix that encodes data relations that are expressed in a
graph by the Laplacian matrix L, I is an identity matrix of
appropriate dimensions and r > 0 is a regularization parameter
that adds a small value to the diagonal elements of Σ to
ensure invertibility (a value of r = 10−3 was used in out
experiments). In our proposed framework, the same graph is
employed for all elements, that connects nearby image regions
with a fixed weight, i.e., a fixed Laplacian matrix. This allowed
us to simplify the equation to:

Z = AXWV , (2)

where A = σ
(

Ł−1

√
n

)
remains fixed during both training

and inference stage. This reformulation remains easy to plug
to standard Transformer-based neural networks, in a fully



end-to-end differentiable manner, being a transformer-based
detection variant significanlty faster yet and more accurate than
DETR [8]. The detection module implementing this method
can output frames at a mean rate of 10 fps with standard Jetson
Xavier AGX hardware, which is acceptable provided that the
gaps in-between detections are filled with a tracking module.
An example of a detection using this software is shown in
Figure 1.

Fig. 1: Sample output of the proposed 2D detection and
tracking software.

2) 2D target tracking: The target tracking is mathemati-
cally defined as the regression part of the detection task, i.e.,
ŷ = f(I; θ), where ŷ = [x, y, w, h]⊤ are the ROI coordinates
of the target. The main assumption of tracking algorithms is
that the tracked ROI always re-appears in successive frames,
slightly translated, rotated and/or scaled. In aerial cinematog-
raphy, however, besides estimating the affine transformation,
another challenge is that the target also disappears from the
field of view quite often. This is related to either abrupt
camera/drone motions, that can introduce extreme noise due to
vibrations (e.g., extensive blurring) or even completely lose the
target. In fact, according to Visual Object Tracking Challenge
reports [18], occlusions are the most common causes of
tracking failure, hence they should be taken into account.

To address the above-mentioned challenges, we have opted
for a two-fold approach. Since we only focus on finding the
correct analogy of the bounding box, we have selected the
SiamFC siamese tracker [13], which is very fast, and very good
at maintaing and finding the correct scale of the bounding box.
The algorithm was optimized for speed using the appropriate
software acceleration libraries (i.e., TensorRT1). Furthermore,
inspired by [15], we have developed a framework that accounts
for target occlusions and estimates the tracking quality for each
output bounding box. That is, instead of employing an SVM
classifier, we trained a simple two-layer CNN network that
works as a 3rd branch of the implemented tracker, that takes
as input the detected features for selecting the ROI template
and outputs a number between 0 and 1, where 0 means that the
tracker believes that the target is lost. To train the algorithm,
we have employed the VOT tracking benchmark, which is
annotated for target occlusions. Thereby, the classifier was

1https://developer.nvidia.com/tensorrt

trained to detect occlusions from the tracker ouputs. In our
experiments, we have set this parameter to 0.95, to only allow
tracker outputs with high confidence.

B. 3D Object geopositioning
Once the boundary box of the target has been identified

relative to the center of the camera, the distance is obtained
from the height of the drone above ground level (AGL) h, the
angle of pitch of the camera θ, and the vertical angle between
the rays that project to the camera focal center and to the
middle bottom of the boundary box.

Fig. 2: Pinhole model and distance estimation diagram.

From the definitions in Figure 2, the distance li can be
calculated as follows:

li =
h

tan(θ + i
Fy

Ch
)
, (3)

with i ∈
[
− θ

Fy/Ch
, Ch

2

]
. The camera pitch (θ) angle includes

the fixed camera mounting angle and the instantaneous drone
pitch provided by the flight controller. Fy and Ch are the ver-
tical field of view of the camera and the height in pixels. The i
and j distances from the center of the camera to the center of
the bounding fox foot are given by i = Cy−Ch

2 , j = Cx−Cw

2 ,
where Cy , Cx Ch and Cw are the vertical center of the camera,
the horizontal center, the height and width respectively. The
point coordinates in the camera reference frame (X axis
pointing forward to the normal of the camera plane and Y
axis pointing right in the camera plane watched over the top)
are Pc = (li, li tanψoffset). To define the position in a North-
East-Down (NED) coordinate system:(

y
x

)
NED

=

(
cosψdrone sinψdrone

− sinψdrone cosψdrone

)(
y
x

)
C

(4)

A very important property of the usual pinhole model for
camera projection is that 3D lines in the scene are projected
to 2D lines. Low-cost wide-angle lenses typically introduce a
strong barrel distortion. For a fast and efficient lens distortion
correction, a simple radial algebraic lens distortion model was
used [19]: (

x̂− xc
ŷ − yc

)
= L(r)

(
x− xc
y − yc

)
, (5)

where x̂, ŷ are the corrected x and y coordinates and xc,
yc are their respective image center coordinates. The lens
distortion parameters are obtained by minimizing a 4 total-
degree polynomial in several variables:

L(r) = k0 + k1r + k2r
2 + k3r

3 + k4r
4, (6)



where
r =

√
(x− xc)2 + (y − yc)2, (7)

obtaining: 
k0 = 9.593223e− 01
k1 = 0.000000e+ 00
k2 = 5.338546e− 07
k3 = 0.000000e+ 00
k4 = 1.671183e− 12

(8)

for the selected camera. The bounding box camera coordinates
are now suitable for 3D projection assuming the pinhole
camera model.

1) Analyzed sources of error: From (3), we have identified
the most relevant sources of error and combined the typical
uncertainties for each variable based on observations and
sensor manufacturer data:

• Height AGL (h): 2.5 m [20].
• Pitch angle (θ): 3.5 ◦.
• Bounding box (i): 30 px.
The uncertainty model, as a function of the three identified

variables h. θ and i can be expressed by:

δd =

√√√√( δh

tan(θ + i
Fy

Ch
)

)2

+

(
−hδθ

sin2 θ + i
Fy

Ch

)2

+

(
−h Fy

Ch
δi

sin2 θ + i
Fy

Ch

)2

(9)

with i ∈
[
− θ

Fy/Ch
+ 1, Ch

2

]
. Figure 3 shows the increase of

the uncertainty in meters for each variable analyzed as distance
increases. The bounding box and pitch uncertainties account
for the largest growing error over distance, while the height
estimation follows a more linear behavior for distances to
target below 150 m.

Fig. 3: Estimated uncertainty values for typical height, pitch
angle and bounding box errors over distance to target.

III. EXPERIMENTS AND RESULTS

To test the model, a flight experiment was carried out
with a heavy-lifting aerial cinematography hexacopter in a
safe open field environment. Figure 4 shows an overview
of the hexacopter with the detection and tracking equipment
installed. The location was chosen due to its safety and

distance from populated areas. The key hardware components
of the system are:

1) Flight controller: responsible for maintaining stable
flight across the flight plan and sending real-time teleme-
try data including GPS and attitude via ROS. The flight
controller software is based on Ardupilot.

2) Positioning camera: responsible for real-time image
capturing and sending them to the onboard computer
via ROS.

3) Onboard computer: Jetson AGX Xavier, responsible for
receiving location, pose, and detection images, synchro-
nizing times, and performing detection and tracking. The
detection location is shared through ROS to coordinate
aerial shots.

Object-of-interest locations can be shared via ROS to co-
ordinate shots if multiple aerial cinematography drones are
connected over the same network.

Fig. 4: Annotated photography of the hexacopter system
architecture.

The selected objects of interest are electrical towers for their
fixed and equally spaced positions. They also present features
to guarantee the repeatability of the experiment. Nevertheless,
this architecture is suitable for detecting all categories included
in the COCO 2017 [21] pre-trained model without further
training. The experiment conditions are listed below:

• Altitude: 30 m, constant AGL. Flight speed: 6 m/s.
• Parallel side-flight to the towers at a distance of 30 m.
• Number of towers flown for each pass: 4 towers.
• Camera mount angle: 15 º of pitch to the bottom.
• Diagonal FOV: 92 º. Sensor type: 3:2. Cw: 640 px.
Ch: 480 px.

• Magnetic declination at location: +0.76666 º.
The estimated angular error and distance error for each tar-

get are summarized in Figures 5 and 6, respectively. Additional
video comparison with a YOLOv5 [22] detector and flight
experiment videos are provided as supplementary material2.

2This paper has supplementary video material available at
https://youtu.be/NwakO8FnA5s and https://youtu.be/CJpHkhE2kSM,
provided by the authors. This includes two videos featuring the 3D
flight visualization with the detection overlay, and a live bounding box
comparison of a standard YOLO detector and the DETR detector without
tracking.



Fig. 5: Angular error in estimation over distance to subjects.

Fig. 6: Distance error estimation over actual distance to
subjects.

Fig. 7: Object of interest actual coordinates and algorithm-
generated coordinates comparison.

The results demonstrate that distance and angular errors
increase with distance to the target. This trend is more
pronounced for distances greater than 100 meters. While the
estimated distance values are well defined by the uncertainty
model, errors are more significant than expected for long
distances. This discrepancy is attributed to the implicit lim-
itations of the flat terrain assumption used in the algorithm,
as the experimental location featured slight uphill inclinations
causing an overestimation of the distance.

In some cases, it is also observed how the error tends to
increase at distances below 60 meters. Since the experiments

were carried out parallel to the power line, when the drone is
about to pass a tower (and thus the distance is minimum), the
bottom of the tower falls out of the detection camera’s field
of view, but the algorithm is still able to detect it and track it.
This produces inaccurate geopositioning of the tower. In future
works we will consider identifying whether the detection of
the tower may be incomplete to improve this aspect.

Figure 7 presents the experimental position estimations for
each target on the map. The position estimation for objects
closer than 120 meters approximately is reasonably good. This
implies that the algorithm is suitable for most types of shots
discussed in the bibliography [1].

IV. CONCLUSION

In this study, we have presented a real-time 3D position es-
timation algorithm for aerial cinematography based on image
detection and tracking. The uncertainty of the algorithm was
evaluated based on different variables, and the results were
validated with experimental flight data. The results demon-
strate a reasonable level of accuracy, with the vast majority
of measurements below 100 meters of distance featuring an
absolute error lower than 5 meters and 3 degrees of yaw. The
algorithm’s main limitation is using a flat-earth assumption for
the ground model, which may be improved using an alternative
ground model that does not require iterative solving. Future
work includes implementing this algorithm in an automatic
planning system for aerial cinematography shots.
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