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Figure 1: a) Raw image [3] , b, c, d) Different annotation strategies e) Fire prediction

ABSTRACT
Recently, climate change has led to more frequent extreme weather
events, introducing new challenges for Natural Disaster Manage-
ment (NDM) organizations. This fact makes the employment of
modern technological tools such as deep learning and Deep Neural
Networks (DNNs) a necessity, as they can assist such organizations
manage these extreme events more effectively. One of the most im-
portant tasks in which DNN-based algorithms could be invaluable
is fire detection, where the goal is to identify and localize fires by
predicting bounding boxes, typically using as input video frames.
Selecting the most suitable DNN model to be utilized in such algo-
rithms is vital to NDM, since inaccurate predictions can adversely
affect disaster response, thus highlighting the importance of a reli-
able fire detection evaluation metric. In this work, we argue that
the mean Average Precision (mAP) metric that is commonly used to
evaluate typical object detection algorithms can not be trusted for
the fire detection task, due to its high dependence on the employed
data annotation strategy. This means that the mAP score of a fire
detection algorithmmay be low even when it predicts fire bounding
boxes that accurately enclose the depicted fires. In this direction,
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a new evaluation metric for fire detection is proposed, denoted as
Image-level mean Average Precision (ImAP), which reduces the
dependence on the bounding box annotation strategy by reward-
ing/penalizing bounding box predictions on image level, rather
than on bounding box level. Experiments using different Convolu-
tional Neural Network (CNN)-based and Transformer-based object
detection algorithms have shown that the proposed ImAP metric
reveals the true fire detection capabilities of the tested algorithms
more effectively.
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1 INTRODUCTION
Climate change has resulted in a notable upsurge in the frequency
and severity of natural disasters, particularly wildfires and floods,
posing significant threats to both ecosystems and human lives. Since
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2000 the recorded average number of fires per year was 70,600 [11].
These climatic events are projected to persist in the future, requiring
significant improvements in the field of Natural Disaster Manage-
ment (NDM). One pivotal facet of NDM pertains to emergency
response, which focuses on human lives safety, immediate relief
provision, and the restoration of stability in disaster-stricken ar-
eas. Within the ambit of emergency response, the deployment of
advanced fire detection mechanisms emerges as a critical task. This
technology not only detects fires at their early stages, preventing
uncontrolled conflagrations, but also provides useful outputs that
can be used to optimize the allocation and utilization of available
firefighting resources.

Traditional image processing-based approaches for fire detection
primarily relied on processing video frames using wavelet transfor-
mations [28] or combining color and motion detection to identify
fire pixels [26]. More recent fire detection methodologies [9, 27] typ-
ically rely upon Deep Neural Networks (DNNs) and Convolutional
Neural Networks (CNNs) to identify and localize fires within images
or video frames. DNNs and CNNs have the capacity to undergo
training for fire detection across various scales and in a diverse
range of environmental conditions, offering a more effective solu-
tion when compared to conventional sensors. However, they also
face some challenges, primarily due to their reliance on both the
quality and quantity of available data. In order to achieve good gen-
eralization ability, DNNs/CNNs typically require annotated datasets
that encompass a wide array of scenes and numerous fire-related
scenarios. Additionally, the development of larger, high-accuracy
models usually entails an increased computational demand, posing
a greater challenge for real-time fire detection.

Nowadays, the prevailing approaches for fire detection [2, 20, 21]
leverage advanced object detection algorithms built on CNNs [13,
15] , which are great at handling spatial information. Conversely,
some methods opt for Transformer-based approaches [1, 31], which,
despite being slower, utilize architectures capable of capturing
global context of an image.

All these approaches utilize the mean Average Precision (mAP)
metric to evaluate their performance on detecting objects/fires,
which awards/penalizes object/fire bounding box predictions based
on their alignment with the corresponding ground-truth boxes. In
most objects such as cars, numerous “children" objects that belong
to different classes (e.g., car wheel, car window) collectively con-
tribute to creating the “parent" object (car). Consequently, each
“parent" object corresponds to exactly one ground-truth bounding
box. However, in the case of objects like fire, "children" objects
belong to the same class as the “parent" object (fire), which creates
uncertainty regarding whether each "child" is, in fact, a “parent"
object. This uncommon property of fire entities introduces uncer-
tainty for both human annotators and DNNs/CNNs concerning
the number of bounding boxes required to represent a fire object
accurately. This is illustrated in Fig.(1), where despite the fact that
all annotation styles are deemed correct, it is probable that only
one of them will align with the predicted bounding boxes (case
A, sub-figures) . In cases like the ones depicted in sub-figures c)
and d), the mAP scores do not represent the actual object/fire de-
tection performance of the detectors. To tackle this, we propose a
new evaluation metric for fire detection, namely Image-level mean
Average Precision (ImAP). Instead of looking at each predicted

Figure 2: Intersection over Union (IoU)

bounding box separately, ImAP evaluates the fire detection models
on their ability to predict fire object bounding boxes in the whole
image. Experiments using different object detectors show that the
proposed metric is more suitable for evaluating these models in the
fire detection task.

2 RELATEDWORK
Object detection involves identifying and localizing numerous dis-
tinct objects within an image. Training DNNs to identify specific
objects, typically requires a manually annotated dataset, where
each object of interest is outlined by its corresponding ground-truth
bounding box and labeled with its associated class. During testing
time, object detections algorithms typically output the predicted
bounding box coordinates (in a pre-defined format), the object class
and the corresponding prediction confidence score. Therefore, the
correctness of a bounding box prediction (𝑝𝑟𝑒𝑑𝐵𝐵 ) with respect
to its corresponding ground-truth (𝑔𝑡𝐵𝐵 ) is measured using the
Intersection over Union (IoU) metric. This metric computes their
overlapping area divided by their union area as depicted in Fig. 2
and it is defined as:

𝐼𝑜𝑈 (𝑝𝑟𝑒𝑑𝐵𝐵, 𝑔𝑡𝐵𝐵) =
𝑝𝑟𝑒𝑑𝐵𝐵 ∩ 𝑔𝑡𝐵𝐵

𝑝𝑟𝑒𝑑𝐵𝐵 ∪ 𝑔𝑡𝐵𝐵
. (1)

Based on Eq. (1) and the ground-truth and predicted classes 𝑔𝑡𝑐𝑙𝑠 ,
𝑝𝑟𝑒𝑑𝑐𝑙𝑠 respectively, True Positives (TP), False Positives (FP) and
False Negatives (FN) are defined as follows:

• True Positive (TP): A prediction for which the IoU of the
predicted bounding box with the corresponding ground-
truth is higher than a threshold 𝜏 and both of them belong to
the same class, 𝐼𝑜𝑈 (𝑝𝑟𝑒𝑑𝐵𝐵 , 𝑔𝑡𝐵𝐵) > 𝜏 AND 𝑝𝑟𝑒𝑑𝑐𝑙𝑠 = 𝑔𝑡𝑐𝑙𝑠 .

• False Positive (FP): A prediction for which the IoU of the
predicted bounding box with the corresponding ground-
truth is lower than a threshold 𝜏 , or the predicted box and the
ground-truth do not belong to the same class, 𝐼𝑜𝑈 (𝑝𝑟𝑒𝑑𝐵𝐵 ,
𝑔𝑡𝐵𝐵) < 𝜏 OR 𝑝𝑟𝑒𝑑𝑐𝑙𝑠 ≠ 𝑔𝑡𝑐𝑙𝑠 .

• False Negatives (FN): A ground-truth bounding box which
the DNN fails to detect.

It is important to highlight the fact that if there is a bunch of
predictions that match the conditions to be counted as TP for a
particular ground-truth bounding box, we mark as TP only the one
with the highest confidence score, and we classify the remaining
as FP. Then, in order to calculate the average precision metric, the
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precision and recall metrics are utilized.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3)

The precision metric Eq. 2 signifies the percentage of accurate
predictions made by the model. A higher precision value implies a
greater likelihood that a given prediction is correct. On the other
hand, the recall metric Eq. 3 calculates the percentage of ground-
truth bounding boxes that the model successfully identifies. A low
recall value indicates that the model lacks the ability to detect the
objects of interest in an image.

Both of these metrics provide information about the weaknesses
and strengths of detection algorithms. However, selecting the best
among them becomes a challenging task when we lack a single
scalar metric. Additionally, the evaluation results are not influenced
by the confidence scores of the predicted bounding boxes. These
disadvantages have been addressed by the Average Precision (AP)
metric, which calculates the area under the precision-recall curve
(PR-curve) depicted in Fig. 3. In Fig. 3, the X-axis represents the
recall rate, while the Y-axis denotes the corresponding precision
values. In order to generate the PR-curve, all predictions must be
arranged in descending order based on their confidence scores.
Subsequently, each TP prediction is given a value DT=1, while each
FP one is given a value of DT=0. The X-axis and Y-axis values of
the PR-curve for the n-th prediction are then defined as:

𝑃𝑛 =

∑𝑛
𝑖=1 𝐷𝑇𝑖

𝑛
, (4)

𝑅𝑛 =

∑𝑛
𝑖=1 𝐷𝑇𝑖

𝑁𝐺𝑇
, (5)

where 𝑁𝑔𝑡 is the total number of ground-truth bounding boxes.
However, drawing the PR-curve based on linear interpolation of
the points produced by Eq.(4, 5), is causing many “zigzags" on the
curve as shown in Fig. 3 , which may lead to inaccurate evaluation
results [17]. This phenomenon arises due to the fact that when
consecutive FP predictions are followed by a TP, the precision
value of the TP is higher than the minimum of the FPs (consecutive
FPs have the same recall and different precision values). All AP
variations utilize the approach of selecting the maximum precision
from the right, with the aim to eliminate the error that “zigzag"
curve produces. Therefore, the precision for a specific recall value 𝑟 ,
is the highest precision achieved among all recalls 𝑟 ′ where 𝑟 ′ ≥ 𝑟

[6]. Based on the updated piece-wise constant curve Fig. (3), object
detection challenges [6, 7, 14] utilize either N-point [19] or all-point
[30] interpolation for the AP metric computation.

The N-point interpolation creates a set of N equal spaced recall
values 𝑅′

𝑁
= { 1

𝑁
, 2
𝑁
, ..., 𝑁−1

𝑁
, 𝑁
𝑁
} in order to compute the average

of their corresponding precision values [17].

𝐴𝑃𝑁 =
1
𝑁

∑︁
𝑟𝜖𝑅′

𝑁

𝑃𝑚𝑎𝑥 (𝑟 ), (6)

where 𝑃𝑚𝑎𝑥 (𝑟 ) = 𝑚𝑎𝑥
𝑘 :𝑅𝑘 ≥𝑟

𝑃𝑘 .

Figure 3: Precision-Recall Curve

All-point interpolation calculates the AP across all recall values
generated by Eq. 5. While this approach offers enhanced accuracy
relative to N-point interpolation techniques, it may present compu-
tational inefficiencies when applied to expansive datasets [29].

𝐴𝑃𝑎𝑙𝑙 =

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠∑︁
𝑛=0

(𝑅𝑛+1 − 𝑅𝑛) · 𝑃𝑚𝑎𝑥 (𝑅𝑛+1), (7)

where 𝑃𝑚𝑎𝑥 (𝑅𝑛) = 𝑚𝑎𝑥
𝑘 :𝑅𝑘 ≥𝑅𝑛

𝑃𝑘 , 𝑅0 = 0 and 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 the total

number of predictions made by the model.
In both approaches, the AP metric is computed for each class sep-

arately. So the mean Average Prevision (mAP) metric evaluates the
performance of the model across all classes:𝑚𝐴𝑃 = 1

𝑁𝑐𝑙𝑠

∑𝑁𝑐𝑙𝑠

𝑖=1 𝐴𝑃𝑖 .

In the Pascal VOC 2007 challenge [8], the authors initially pro-
posed the 11-point interpolation method using an IoU threshold
𝜏 = 0.5. This evaluation system remained consistent for the com-
petition until 2010 when there was a transition from 11-point in-
terpolation to all-point interpolation, still utilizing 𝜏 = 0.5. MS
COCO challenge [14] introduced the Average Precision (AP) with
101-point interpolation, coupled with evaluations across 10 differ-
ent IoU thresholds {0.5, 0.55, 0.6, ..., 0.9, 0.95}, calculated using the
following equations:

𝑚𝐴𝑃@𝜏 =
1

𝑁𝑐𝑙𝑠

𝑁𝑐𝑙𝑠∑︁
𝑖=1

𝐴𝑃𝑖@𝜏, (8)

𝑚𝐴𝑃@[0.5 : 0.05 : 0.95] = 1
11

∑︁
𝜏∈[0.5:0.05:0.95]

𝑚𝐴𝑃@𝜏, (9)

where𝐴𝑃𝑖@𝜏 is the average precision of the class i at IoU threshold
𝜏 .

3 IMAGE-LEVEL MEAN AVERAGE PRECISION
In the field of object detection, each image is linked to a set of
fire predictions (Preds) and a set of ground truths (Gts). Each ele-
ment of Gts comprises Bounding Box coordinates (BB) and their
corresponding Class (CLS) labels, while Preds also include the Con-
fidence Score variable (CS). Unlike most objects, fire objects can be
represented in various BB combinations, leading to discrepancies
between 𝑃𝑟𝑒𝑑𝑠𝐵𝐵 and𝐺𝑡𝑠𝐵𝐵 (cases b, c, of Fig. 1). Preventing these
scenarios necessitates employing an IoU between the sets 𝑃𝑟𝑒𝑑𝑠
and 𝐺𝑡𝑠 , to evaluate the overall fire prediction performance within
an image. Image-level Intersection over Union (ImIoU) is a modifi-
cation of the IoU, which measures how well the union of 𝑃𝑟𝑒𝑑𝑠 fit
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Figure 4: A visualization of the Image-level Intersection over
Union

the 𝐺𝑡𝑠 union Fig. 5.

𝐼𝑚𝐼𝑜𝑈 (𝑃𝑟𝑒𝑑𝑠,𝐺𝑡𝑠) =
(∪𝑁𝑃𝑟𝑒𝑑𝑠

𝑖=1 𝑃𝑟𝑒𝑑𝑠𝐵𝐵
𝑖

) ∩ (∪𝑁𝐺𝑡𝑠

𝑖=1 𝐺𝑡𝑠𝐵𝐵
𝑖

)

(∪𝑁𝑃𝑟𝑒𝑑𝑠

𝑖=1 𝑃𝑟𝑒𝑑𝑠𝐵𝐵
𝑖

) ∪ (∪𝑁𝐺𝑡𝑠

𝑖=1 𝐺𝑡𝑠𝐵𝐵
𝑖

)
. (10)

where𝑁𝑃𝑟𝑒𝑑𝑠 ,𝑁𝐺𝑡𝑠 are the lengths of the prediction and ground-
truth sets, respectively. Therefore, we redefine True positives, False
Positives, False Negatives and True Negatives as follows:

• True Positive (TP): Images for which 𝑁𝑃𝑟𝑒𝑑𝑠 > 0 AND
ImIoU(Preds, Gts) > 𝜏 ,

• False Positive (FP): Images for which 𝑁𝑃𝑅𝐸𝐷𝑆 > 0 AND
ImIoU(Preds, Gts) < 𝜏

• False Negative (FN): Images for which 𝑁𝑃𝑟𝑒𝑑𝑠 = 0 AND
𝑁𝐺𝑡𝑠 > 0

• True Negative (TN): Images for which 𝑁𝑃𝑟𝑒𝑑𝑠 = 0 AND
𝑁𝐺𝑡𝑠 = 0

Each TP prediction is given a value DT=1, while each FP one
is given a value of DT=0. Then the image-level detection results
must be arranged based on the mean Confidence Score of their
predictions (mCS Eq. 11), in order the Eq.(4,5) to compute the new
Precision Recall points. The number of these points is equal to
the images with 𝑁𝑃𝑟𝑒𝑑𝑠 > 0 and lower than the number of BB
predictions. This fact led us choose All-point interpolation as the
method to compute the Image-level Average precision (IAP). Like
MS-COCO challenge we provide the new Image-level mean Average
Precision (ImAP) metric which evaluates image-level predictions
across different ImIoU thresholds 𝑡𝜖 [0.5 : 0.05 : 0.95].

𝑚𝐶𝑆 =
1

𝑁𝑃𝑟𝑒𝑑𝑠

𝑁𝑃𝑟𝑒𝑑𝑠∑︁
𝑖=1

𝑃𝑟𝑒𝑑𝑠𝐶𝑆𝑖 (11)

𝐼𝑚𝐴𝑃@𝜏 =
1

𝑁𝑐𝑙𝑠

𝑁𝑐𝑙𝑠∑︁
𝑖=1

𝐼𝐴𝑃𝑖@𝜏 (12)

𝐼𝑚𝐴𝑃@[0.5 : 0.05 : 0.95] = 1
11

∑︁
𝜏∈[0.5:0.05:0.95]

𝐼𝑚𝐴𝑃@𝜏 (13)

When two small 𝑝𝑟𝑒𝑑𝐵𝐵 correspond to a bigger 𝑔𝑡𝐵𝐵 , the area
of the union that is not in the intersection one, is causing a drop
on ImIoU value. Comparing theoretically 𝐼𝑚𝐴𝑃@[0.5 : 0.05 : 0.95]
with 𝐼𝑚𝐴𝑃@[0.5], the last one can handle these ’error areas’ due
to low ImIoU threshold 𝜏 while the metric with large thresholds

incorrectly evaluate image-level predictions as FP. So 𝐼𝑚𝐴𝑃@[0.5]
fulfil the purposes of image-level evaluation while 𝐼𝑚𝐴𝑃@[0.5 :
0.05 : 0.95] tends to behave like a combination of the box-to-box
mAP with ImAP.

DNN-based object detection models often predict more objects
than what actually exists. High-confidence predictions typically
align closely with the 𝑔𝑡𝐵𝐵 . In contrast, low-confidence predictions
may not correspond to any target and often exhibit low or zero
IOU with the corresponding 𝑔𝑡 . These incorrect predictions expand
the “error area", resulting a large number of false positives due to
low ImIoU. To optimize the evaluation performance of our metric,
we need to identify the CS threshold that maximizes the ImAP. By
filtering predictions based on this threshold, we retain only the
essential predictions that best match the union of ground-truths.

For natural disaster management, visualizing and analyzing fire
detections results is crucial. Setting the confidence score threshold
to zero often results in poor visualizations due to a high number
of false positives. Moreover, manually selecting the threshold can
be imprecise. By setting the threshold to the value that maximizes
ImAP, we can filter out false positives while retaining the predic-
tions that best capture fire within an image. mAP metric can not
detect this threshold due to the fact that removing detections is
decreasing its value. When the AP algorithm evaluates the low
confidence score predictions in order to draw the furthest right
points of the PR-curve, FPs detections do not affect the metric as
much as possible TPs that will be removed after the filtering. The
reason for this based on Eq.(4,5), is that a low confident TP extent
the limits of RP-curve in the same amount as a high confident TP
(denominator of Eq. 5 has a constant value equal to the number of
the ground-truths). In contrast to recall, the changes in precision
are small regardless of the prediction result, as the denominator of
Eq. 4 is equal to n.

4 EXPERIMENTS
4.1 Dataset
In order to train deep neural networks across a wide range of
fire scenarios and environments like cities, forests, and aerial im-
ages, we combine three datasets: dfire [3], jhope [12], and crossican
[22, 23]. Crossican, initially a segmentation dataset for forest fires,
undergoes a transformation into a detection dataset using image
processing. Jhope, sourced from roboflow, contains diverse fire
types. Dfire, a fire-smoke dataset, has smoke boxes removed, retain-
ing all images for training without ground-truth. This approach
aids deep neural networks in distinguishing fires with like-fire ob-
jects. We created a test set, emphasizing scenarios of forest fires
and wildfires, serving the purpose of natural disaster management.

4.2 DNN-based Object Detection
The choice of DNN models wasn’t solely guided by the latest real-
time object detectors. Models process image information in diverse
ways, resulting in differences between their detections. CNN-based
models [10, 18, 25] have been dominant in computer vision, due
to their ability extracting rich spatial information. Yolo-v8 [13]
is a powerful CNN based real-time detector which have the best
accuracy compared to other architectures within the YOLO [15, 25]
family. It is extracting 3 feature maps of different scales produced
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Figure 5: Comparison of the IOU with ImIoU for three different cases. Above the images are the ImIoU results along with
the detection results for each scenario. Below the images are the IOU of each prediction P1, P2, P3 with their corresponding
ground-truth. We observe that ImIoU predict the images as True Positives regardless of the annotation style. In contrast to
ImIoU, IOU in most cases will result many incorrect FPs affecting the mAP

by the backbone and transfer information from one map to another
via down-sampling and up-sampling. Subsequently, predictions are
generated from each new feature map. In contrast to Yolo-v8, Faster-
RCNN [18] generate its predictions based on the Region Proposal
Network (RPN). The RPN, for every vector of the last feature map,
predicts the coordinates of many bounding boxes along with their
confidences scores. Then, for every proposal, Faster-RCNN extracts
the corresponding part of the feature map and feeds it to a network
in order to classify it.

The rise of Natural Language Processing, thanks to transformer-
based [4, 24] architectures with excellent long-range dependency
detection capabilities, also made an impact in the field of the com-
puter vision. Soon enough, architectures like Visual Transformer
(VIT) [5] and Detection Transformers (Detr) [1] demonstrated supe-
rior performance compared to traditional CNN-based approaches.
RT-DETR [16] is state of the art real-time object detector. The RT-
DETR architecture consists of a ResNet backbone, a hybrid encoder
that transfers information between the last three feature maps pro-
duced by the backbone, and a decoder comprising several stacked
transformer decoder layers. From the output of the decoder, RT-
DETR predicts the bounding boxes along with their associated
classes.

4.3 Experimental Setup
All models were trained for 72 epochs, 640 input image size andwith
its recommended setup. The Faster R-CNN was trained using the
Stochastic Gradient Descent (SGD) optimizer, with a learning rate
of 10−3 and a batch size of 4. In contrast, the RT-DETR employed
the AdamW optimizer, set at a learning rate of 10−4 and 10−5 , and
also maintained the same batch size of 4. Lastly, the YOLOv8 was
trained using SGD, but with a higher learning rate of 10−2 and a
larger batch size of 16.

4.4 Experimental Results
Fig. 6 depict 𝐼𝑚𝐴𝑃 [0.5 : 0.05 : 0.95] and 𝐼𝑚𝐴𝑃@[0.5] scores in
relation to the Confidence Score (CS) threshold. It is crucial to em-
phasize that maintaining a zero or constant CS threshold across

Figure 6: ImAP@[0.5] and ImAP[0.5:0.05:0.95 ] with respect
to image confidence threshold

MODEL mAP 𝑚𝐴𝑃0.5 ImAP 𝐼𝑚𝐴𝑃0.5
F-RCNN[18]-VIT [5] 47.6 79.8 57.57 91.84
F-RCNN [18]-R50 [10] 51.04 82.35 59.02 91.74
YOLOV8-Large [13] 61.8 86.5 67.76 93.05
YOLOV8-Medium [13] 59 84.6 64.98 91.39
YOLOV8-Small [13] 58.9 85.2 65.57 91.53
RT-DETR-R50-256 [16] 58.06 84.36 65.25 93.02
RT-DETR-R50-64 [16] 59.1 84.82 67.06 93.07

Table 1: Comparative evaluation of Faster-RCNN, YOLO-v8,
and RT-DETR DNN methods using mAP and ImAP evalua-
tion metrics

mAP 𝑚𝐴𝑃0.5 ImAP 𝐼𝑚𝐴𝑃0.5
mAP 1
𝑚𝐴𝑃0.5 0.9812 1
ImAP 0.9846 0.9519 1
𝐼𝑚𝐴𝑃0.5 0.4248 0.4031 0.5249 1

Table 2: Correlation between the Table 1 columns
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all models, as observed in Fig. 6, can lead to an unjust and biased
comparison of object detectors. By selecting the CS threshold that
maximizes ImAP, we obtain a robust metric that reveals the maxi-
mum fire detection performance of the models.

The maximum ImAP values for each detector are presented in
Table 1, accompanied by mAP metric results for comprehensive
assessment. Notably, the strong correlation between 𝐼𝑚𝐴𝑃@[0.5 :
0.05 : 0.95] and mAP (Table 2) proves that the ImAP metric, as
the ImIoU threshold increases, mirrors the behavior of mAP, elim-
inating any margin for “error" areas in fire detection. However,
𝐼𝑚𝐴𝑃@[0.5] shows a lower correlation with mAP due to its ability
to overcome the incorrect discrepancies between predicted and
ground-truth bounding boxes (Fig. 5, case C). Consequently, based
on its results, we can identify the model that excels in predicting
fire within an image.

5 CONCLUSIONS
In this work a new metric for evaluating fire detection algorithms,
called Image-level mean Average Precision (ImAP) is proposed.
Due to the particular nature of the fire detection task, the proposed
metric measures how well the overall fire is detected in the whole
image, extending the bounding box-per-bounding box evaluation
protocol followed by the typical mAP metric. Experiments using a
wide variety of object detection algorithms and a challenging fire
detection dataset have shown that the proposed metric can more
accurately capture and represent the actual performance of the fire
detectors. As a result, it can serve as a very useful tool for a wide
range of NDM applications. Through additional experiments it is
also shown that for increased threshold values the proposed ImAP
metric behaves similar to the typical mAP one. Finally, it is shown
that ImAP with a threshold value 𝜏 = 0.5 provides very useful
insights for selecting the most appropriate fire detection model.
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