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Abstract—The task of autonomous inspection of the power
transmission infrastructure includes a robotic system that is able
to track the power line. This work addresses the problem of
the visual localization of the power lines from RGB cameras,
using deep neural networks. For challenging-to-label tasks like
this, simulators can efficiently generate large amounts of labeled
data. In this work, a large-scale annotated synthetic power lines
dataset has been generated1. To address domain shift between
real and synthetic domain, input-level adaptation was performed.
Additionally, a new power line segmentation loss developed to
mitigate the effects of unbalanced pixel distributions among
power lines and background. Experiments demonstrate that our
approach achieves state-of-the-art performance on power line
segmentation task.

Index Terms—Power line segmentation, Synthetic dataset,
Domain adaptation, UAVs inspection, Aerial images

I. INTRODUCTION

Transmission line networks have almost expanded every-
where due to rising electrical consumption. To perform the
actual inspection autonomously, it is important that the robotic
system is able to identify the power lines. From the computer
vision perspective, this task can be addressed either as a
line detection problem [1], or as a pixel-level segmentation
problem [2], which is the focus of this work. The task is
particularly challenging because the power lines are difficult
to detect even for the human eye, since they are small typically
appear visually similar with other high-frequency feature ele-
ments, e.g., a plowed field, roof ridges and road lines and they
must be distinguished among many different backgrounds and
vegetation. Therefore, training a neural network that will be
robust for this task, requires vast amounts of data for training
purposes.

Power line segmentation is a crucial component of the
Unmanned Aerial Vehicles (UAVs) intelligent power line
inspection process for power-grid security and low-altitude
safety. The effectiveness of segmentation methods is depen-
dent on the availability of labeled training data. Collecting
and annotating large datasets for any new segmentation task
is costly, time-consuming, labor-intensive, and error-prone. In
this work, we created a large-scale annotated synthetic dataset,
that captures the diversity of the appearance across various
flight altitudes and geographic locations. Nevertheless, the

1that will be made publicly available along with the unity scenes upon
paper acceptance.

diversity of the different backgrounds can not be optimally
modeled in a simulated environment. In order to address
the domain shifts, we have employed Domain Adaptation
(DA) to bridge the distribution gap between the real domain
and the synthetic domain, hence boosting the generalization
capabilities of learned models on real data.

The following are the major contributions of this work: i)
a large-scale synthetic power lines dataset. To the best of our
knowledge, this is the first synthetic dataset including power
lines that will be made publicly available, and it constitutes
a significant contribution for both the scientific community
and industry. ii) a new DA framework for power line seg-
mentation, particularly input-level adaptation performed uti-
lizing a lightweight fourier-based image-to-image translation
strategy. This strategy outperforms well-known domain adver-
sarial adaptation strategies in terms of training speed, ease
of implementation, and memory. iii) a weighted power line
segmentation loss function combining focal loss and dice
loss was developed to mitigate the impact of the unbalanced
distribution of pixels between power lines and background on
segmentation accuracy. iv) The proposed framework achieve
SOTA performance in the task of power line segmentation
when applied to the well-known TTPLA power lines dataset
[3].

II. RELATED WORK
A. Power line Segmentation

Traditional approaches identify power lines primarily by
recognizing power line features [1] or objects associated [4]
with power lines based on the assumption that power lines
are either straight lines or polynomial curves that are parallel
to each other. Such methods begin by distinguishing potential
power line pixels from the background utilizing edge detector,
then they employ hough transformation [5], followed by pre-
vious knowledge to refine the detected outcomes. Most of the
previous approaches rely on complex parameter adjustments,
making them less stable in practice.

Since Deep Neural Networks (DNNs) can automatically
learn useful features and enable an end-to-end solution, re-
searchers have started to build power line inspection systems
leveraging DL. In [6] authors proposed an attentional convo-
lutional network for pixel-level, which consists of an encoder-
decoder information fusion module as well as an attention



module. A fast single-shot line segment detector trained with
artificially generated power line images proposed in [7]. In
[2] an approach based on Generative Adversarial Networks
(GANs) is described for segmenting power lines from aerial
images.

B. Domain Adaptation

Adaptation methods can be applied at several levels, in-
cluding the input-image level, internal-feature representations,
and output-level. Recently, the majority of approaches have
relied on adversarial learning [8] enabling pixel or feature-
level adaptations or self-training [9] through the refinement
of pseudolabels. In adversarial learning, the core issue is the
necessity of learning multiple networks in addition to the target
one, and the challenge of stabilizing adversarial training, but
also the self-training approach that is self-referential, demands
careful design to avoid error propagation.

III. INTRODUCED SYNTHETIC DATASET

There are two works with artificial datasets containing
power lines [7], [10], but both of them are not very photo-
realistic and are not publically available. The previous issues
served as inspiration for this work. First and foremost, there is
a demand for a publicly available large-scale Synthetic Power
Lines (SPL) dataset consisting of thousands of RGB images.
Moreover, this dataset can expand at any time, at any desired
resolution, without requiring the sensor to be adjusted or the
rebuilding of any previously used environments, and it is also
considerably more photorealistic as shown in Fig. 1. The SPL

Figure 1: Images from the synthetic power lines dataset cap-
tured in various environments, angles, and camera distances.

dataset was generated utilizing unity, one of the most popular
gaming engines in the world, and unity’s perception package.
The introduced dataset containing aerial images of power lines
in every possible combination of different locations, lighting
conditions, tilts, angles, FOVs. All power lines in SPL are
recorded from several viewpoints, including front view, top
view, and side view. As a result, there are almost no occlusions
and UAVs can fly in any direction without concerned about
detection accuracy. Power lines must be correctly detected
against backgrounds, the SPL includes a large number of
images of power lines with noisy backgrounds, making the

process of extracting power lines challenging and close to a
real-world scenario. The SPL dataset statistics are summarized
in Table 1, and were divided into 70% for training, 10% for
validation, and 20% for testing.

TABLE I: SPL Dataset Statistics.

Resolution World 1 World 2 Total
Images

Train
set

Validation
set

Test
set

1,920×1,080 5,770 7,080 12,850 8,995 1,285 2,570

IV. PROPOSED FRAMEWORK

A. Fourier-based Adaptation:

Although the majority of inter-domain low-level statistical
differences lack any semantic importance, they are likely to
cause an unexpected performance drop on target samples,
even though the source and target images share a higher
level of semantic similarity in terms of scene structure and
content. This is important as it seems that DNNs do not really
transfer well between various low-level statistics. Inspired by
[11] we employ a Fourier-based translation technique at the
image input level by swapping a synthetic image’s amplitude
spectrum with that of a random real image. This method, does
not employ discriminators that align pixel/feature-level dis-
tributions or image-to-image translation networks to generate
training images. Fourier DA utilized as a separate step and
does not require any training to achieve domain alignment,
instead relying on a simple Fourier Transform and its inverse.

In DA, given a source dataset Ds = {(xs
i , y

s
i )}

Ns
i=1 and a

target dataset Dt = {(xt
i, y

t
i)}

Nt
i=1, where xs, xt ∈ RH×W×3

is a RGB image, and ys, yt ∈ RH×W is the segmentation
map associated with xs, xt accordingly. Utilizing Fourier-
based DA, we aim to bridge the domain discrepancy between
the two datasets and enhance performance on the DT . The
amplitude and phase components of the Fourier Transform
are defined as:

Π(x)(k, l) =
√
R2(x)(k, l) + I2(x)(k, l) (1)

Φ(x)(k, l) = arctan
[ I(x)(k, l)
R(x)(k, l)

]
(2)

where the real and imaginary components of the Fourier
Transform F (x) are represented by R (x) and I (x),
respectively. Assuming that the image’s center is (0, 0), we
indicate with M (β) a mask whose value is zero everywhere
but not in the region where β ∈ [0, 1]. The altered spectral
representation of xs, indicated as X (xs, xt), in which the
low frequency component of the amplitude of source image
Π (xs) is swapped with that of the target image Π (xt), can
be formalized as:

X (xs, xt) = M (β) ·Π (xt) + (1−M (β)) ·Π (xs) (3)

Fourier-based adaptation formalized given a set of randomly
sampled images xs, xt as:

xs→t = F−1 (
[
X (xs, xt),Φ (xs)

]
) (4)



Figure 2: The proposed framework consists of two components: a) an input-level DA module that employs a Fourier-based
image translation strategy, b) a high-performance segmentation architecture trained with a power line segmentation loss.

Where the altered spectral representation X (xs, xt) is
projected back to the image xs→t while keeping the phase
component Φ (xs) unaltered, whose content is similar to xs,
but whose appearance is similar to a sample from DT .

B. Segmentation Architecture:

DeeplabV3+ [12], the most recent DeepLab family ver-
sion that combines a wide range of strategies such as skip
connections, dilated convolution, global context, and robust
backbone network, was selected in this this work. As an
encoder, DeeplabV3+ employed the DeepLabV3 [13]. The
segmentation architecture, as shown in Fig. 2, was trained
using the proposed power line segmentation loss.

C. Power line segmentation loss:

Power line inspection is challenging due to poor visual
appearance and complex backgrounds. Dice loss [14] con-
siders both local and global loss information, has no trouble
learning from classes with less spatial representation inside an
image, and focuses mostly on mining the foreground during
the training phase. Dice loss, formulated as follows:

Ldice = 1−
2 ·

∑H·W
i=1 pi · gi∑H·W

i=1 p2i +
∑H·W

i=1 g2i + ϵ
(5)

where pi is the i-th pixel’s estimated probability and gi is the
i-th pixel’s ground truth. The ϵ term is employed in this case
to guarantee the stability of the loss function by addressing
the numerical problem of dividing by zero. However, it only
solves the problem among foreground and background while
ignoring another imbalance among easy and hard examples.

To address this restriction of dice loss, we employ focal
loss [15], which emphasizes on examples where the model is
inaccurate rather than examples where it can reliably estimate,
allowing predictions on difficult examples to get better over
time rather than the model being overconfident with easy ones.
This is accomplished by a process known as down weighting.
Focal loss, formulated as follows:

Lfocal =

{
−α ·

∑H·W
i=1 (1− pi)

γ · log(pi), gi = 1

−(1− α) ·
∑H·W

i=1 pγi · log(1− pi), gi = 0
(6)

The weight vector α = [0.25, 075] for background and power
lines class, respectively. The higher the value of focusing
parameter γ, the greater the attention paid to misclassified hard
examples (power lines) and the smaller the loss propagated
from simple examples (background), based on our experi-
ments, we set γ = 3.

In this work, in order to enhance the performance of power
line segmentation on aerial images we introduced a weighted
loss function for power line segmentation that combines focal
loss and dice loss to benefit from the advantages of both. When
the loss functions are combined, we get our complete learning
objective as:

Ltotal = λ1 · Lfocal + λ2 · Ldice (7)

where λ1, λ2 regulates the compromise between the dice loss
and the focal loss. Based on the results of our experimental
analysis, λ1, λ2 are both set equal to 0.5.

V. EXPERIMENTAL EVALUATION

A. Datasets and Implementation Details

There are not many publically available datasets for power
lines. For experimental evaluation, the SPL dataset presented
in this work and the well-known real-world TTPLA dataset
[3] were employed. We utilized 905 images from the TTPLA
dataset for training, 110 images for validation, and 217 images
for testing. We resized the images from both datasets to 1024×
1024.

The ResNet-50 backbone pre-trained on ImageNet was
utilized for feature extraction. To optimize our network, we
utilize SGD, using an initial learning rate of 0.01, momentum
of 0.9, and weight decay of 4e-5. The “poly” learning rate
policy is employed to control how the learning rate decays
during training. The model was trained on a single NVIDIA
RTX 2080 TI GPU with 11GB of VRAM for 100 epochs.

B. Baselines

Table II, second row, demonstrates that training with just
the SPL dataset decreases TTPLA performance compared to
training with just the TTPLA dataset, Table II, first row.
This happens as a result of the domain shift from synthetic
to real. However, when both the TTPLA and SPL datasets
are combined, we can observe in the third row that there is



TABLE II: Datasets and Loss functions Experiments.

Training
Dataset

SPL
mIOU (%)

TTPLA
mIOU (%) Loss function

Val Test Val Test Standard
CE

Power Line
Segmentation

TTPLA 1.60 2.03 47.92 44.51
√

SPL 56.66 55.14 18.93 17.32
√

TTPLA & SPL 50.05 49.70 53.11 52.83
√

TTPLA & SPL 51.89 50.34 57.58 55.24
√

a considerable improvement in TTPLA, Table II, first row,
particularly +5, 19% on the val set and +8, 32% on the test
set.

C. Loss function:

We compare the power line segmentation loss introduced in
these experiments to the standard CE loss used in semantic
segmentation. The power line segmentation loss improved
performance is +4.47% in the validation set and +2.41% in
the test set, as shown in Table III

D. Domain adaptation:

We tune β until artifacts in the transformed images are
visible, which occurs when β exceeds 0.25. According to our
findings, an intermediate value for β = 0, 01 yields the greatest
outcomes (58.47% in the TTPLA test set). We gain +2.10%
on the validation set and +3.23% on the test set with input-
level DA, as shown in Table IV.

TABLE III: Input image level Fourier-based DA Experiments.

Domain Adaptation TTPLA (Real dataset)
mIOU

Val Test
Without Domain Adaptation 57.58 % 55.24 %

Fourier Adaptation (β = 0, 001) 57.73 % 56.20 %
Fourier Adaptation (β = 0, 01) 58.39 % 58.47 %
Fourier Adaptation (β = 0, 25) 59.68 % 56.09 %

E. Comparison with SOTA method on TTPLA dataset:

To ensure fairness, the same ResNet-6 backbone and 512×
512 resolution are chosen. Based on our previous results,
we apply fourier-based adaptation with β = 0, 01. On the
TTPLA test set, our method outperforms the recently presented
PLGAN architecture [2] by +3.82%, as shown in Table V.

TABLE IV: Comparison on TTPLA dataset.

Method Backbone
Network

Image
Resolution

TTPLA (Real dataset)
Test set mIOU

PLGAN [2] ResNet-6 512x512 53.30 %
Ours ResNet-6 512x512 57.12 %

VI. CONCLUSION

In this work, a novel large-scale synthetic dataset for train-
ing and testing power line segmentation approaches generated,
reducing the need to gather and label a large number of real-
world images. Furthermore, a novel power line segmentation
DA framework that can close the gap produced by the domain

shift between the synthetic and real image presented, and it
is a highly promising direction based on our experimental
results. In addition, a new weighted loss function proposed that
combines focal loss and dice loss to improve the performance
of power line segmentation on aerial images. Finally, our
framework achieves state-of-the-art performance for power
line segmentation task on the well-known real-world TTPLA
dataset.
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