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ABSTRACT

Different adversarial attack methods have been proposed in
the literature, mainly focusing on attack efficiency and visual
quality, e.g., similarity with the non-adversarial examples.
These properties enable the use of adversarial attacks for
privacy protection against automated classification systems,
while maintaining utility for human users. In this paradigm,
when privacy restrictions are lifted, access to the original data
should be restored, for all stakeholders. This paper addresses
exactly this problem. Existing adversarial attack methods
cannot reconstruct the original data from the adversarial
ones, leading to significant storage overhead for all privacy
applications. To solve this issue, we propose AdvRevGAN,
a novel Neural Network architecture that generates reversible
adversarial examples. We evaluate our approach in classifica-
tion problems, where we examine the case where adversarial
attacks are constructed by a neural network, while the origi-
nal images are reconstructed using the reverse transformation
from the adversarial examples. We show that adversarial
attacks using this approach maintain and even increase their
efficiency, while the classification accuracy of the model in
the reconstructed data can almost totally be restored.

Index Terms— Adversarial Attacks, Reversible Adver-
sarial Examples, Reversible GANs, AdvRevGan, Privacy pro-
tection

1. INTRODUCTION

Traditional research on image privacy protection often as-
sumes human adversaries. In other words, privacy risks are
usually quantified by how effectively the information con-
tained in images can be picked up by human eyes and brains.
As a result, “blurring”, “pixelation”, and “mosaic” are still
the most widely used techniques to protect privacy in im-
ages, even while their effectiveness against automatic anal-
ysis tools is limited [1], [2]. On the other hand, the field of
privacy protection against automatic analysis tools is gaining
increased value in social media settings, where we assume
that human users are not adversaries, while automatic image
crawlers might want to collect images of a specific social me-
dia users. To this end, deidentification methods based on uni-

versal adversarial attacks have been proposed to disable au-
tomatic face detection/recognition [3], or adversarial attack
methods that guarantee the principles of k-anonymity [4, 5],
while introducing the minimum possible perturbation to the
original images, maintaining the utility of the data for human
viewers [6].

Nevertheless, an important privacy protection aspect is
not only to maintain the utility of the deidentified data but
to be able to completely restore the original data, upon re-
quest. To this end, the most straightforward approach is to
maintain a local copy of the original data. However, such a
solution severely increases the storage overhead; therefore, it
would be a lot more useful if we only had a single function
for calculating the privacy protection transformation. Univer-
sal adversarial perturbations could be used to this end [7, 8],
however, the actual transformation to the images is merely
additive noise, and most importantly, it is the same for any
given input image. Thus, a third party with access to a single
original and perturbed image pair can easily uncover the per-
turbation. Therefore, in privacy protection applications, it is
essential that this transformation must be unique for a given
input image. To this end, transformation-based adversarial
attacks have been proposed [9], where the universal perturba-
tion is based on a linear multiplicative transformation, thus it
is indeed unique for each image. However, the parameters of
the transformation matrix can still be approximated by using
a sufficient number of original-adversarial image pairs.

In this work, we extend our previous work in transformation-
based universal adversarial perturbations [9] to the nonlinear
case. The role of the transformation function is assigned to
a deep Generative Neural Network, which is composed of
multiple nonlinear activation functions within its architec-
ture. Therefore, the output perturbation is unique for each
given input, whereas the parameters of the network cannot
be attained by third parties. Specifically, we propose the
Adversarial Reversible Generative Network (AdvRevGAN)
architecture, which produces reversible adversarial examples
that work in various input sizes. In contrast with a simple
transformation, where input size directly affects the number
of parameters (transformation matrix), AdvRevGAN is able
to handle different input sizes and perform well without any
change in the size of the model.



2. BACKGROUND AND RELATED WORK

2.1. Universal Adversarial Attacks

Universal Adversarial Attacks (UAP) calculate a perturba-
tion that generalizes for different (almost all) instances of the
dataset by employing image-specific adversarial attack con-
straints. The usage of the same calculated perturbations can
decrease the attack complexity by accessing a single vector
during inference. This perturbation has been an important
contribution to different systems’ generalizations [7]. On the
other hand, universal adversarial attacks produce more noisy
images when compared to image-specific ones [5]. Accord-
ing to to [7], the overall optimization function is formulated
as follows:

argmin
n

∥n∥2 s.t. f (xi + n) ̸= f (xi) , (1)

where xi ∈ Rd is a dataset sample, n is the perturbation vec-
tor and f(·) is the classifier such that the target model mis-
classifies the adversarial sample yi = xi + n.

In the same vein, a variant of the UAP method, namely
SGD-UAP was first introduced by [8]. According to [10], the
creation of UAPs is based on using a variance of the Projected
Gradient Descent (PDG) attack. In particular, it is proved
that SGD can lead to better evasion rates and as a result, it
was chosen over other methods [11]. Moreover, it has better
convergence compared to UAP. In more detail, it optimizes
the objective

∑
i Lf (xi + n) over batches rather than single

inputs where Lf is the model’s training loss and xi can be
batches of input images, and n ∈ RD are the set of the de-
termined perturbations. The gradients updates towards n are
calculated in batches in the direction of −

∑
i ∇Lf (xi+n). It

has been proven that the SGD-UAP method can create UAPs
in a more effective way than the originally proposed method.
In both cases, the derived perturbation vector is the same for
any given input image.

2.2. Transformation-based Universal Adversarial At-
tacks

The adversarial attack optimization problem can also be
viewed as a transformation estimation one, that is expressed
as follows:

min:
|ϕ|

f (g(x;ϕ);θ) ̸= f(x;θ), (2)

s. t. : ∥x− g(x;ϕ)∥p< ϵ, p ∈ [1,∞),

where g(·) : Rd 7→ Rd is an iterative transformation that
maps the data samples of the clean domain X to an adver-
sarial domain Y , while ϕ are the parameters of the transfor-
mation. Here, it should be noted that any type of function
can be employed in order to solve the proposed optimiza-
tion problem, i.e., g(·) could represent any linear/non-linear

transformation or even a whole neural network. This formu-
lation allows more flexibility in the definition of additional
optimization constraints. For instance, the constraint of re-
versibility, which is very useful in privacy protection settings,
could be expressed as an additional optimization constraint,
i.e., g−1(y) = x.

2.3. Multiplicative Universal Adversarial Attacks

The Multiplicative Universal Adversarial Transformation
(MUAT) [9] is a method that exploits the Transformation-
based universal adversarial attack definition. It examines
the simplest case where g(x) = Tx is a linear transfor-
mation, where T ∈ Rd×d is a matrix. The original image
can be obtained from the adversarial image, if matrix T is
invertible. Specifically, this matrix stores the transformation
parameters for clean sample perturbations. While in standard
additive noise-based universal adversarial attacks, a simple
subtraction using a single adversarial-clean image pair attains
perturbations, in the case of multiplicative noise, the analo-
gous is to reverse engineer the matrix T from the data, which
cannot be obtained, using just a pair of clean-adversarial
samples, since the rank of T is supposed to be larger than 1.
The overall optimization function of the MUAT method is the
following:

min
T

λLf (f(Tx;θ), t) + 1− s(x,Tx), (3)

where T is the learnable transformation matrix, t ̸= f(x;θ)
is a target class, 1−s(·, ·) is an additional constraint based on
a similarity-based loss function according to the CW-SSIM
metric [12] and λ is a hyper-parameter for controlling the sig-
nificance of the adversarial attack term of the loss function.

2.4. Adversarial Examples with Generative Adversarial
Networks

Generative Adversarial Networks (GANs) introduced by
Goodfellow [13] for creating generative models PG which
model the data distribution Pdata used in the training set.
More specifically, GANs consist of two DNNs that are trained
simultaneously, a generator network G : Z → Y and a dis-
criminator network D : Y → [0, 1]. The generator G is fed
with random noise z generating instance yadv from a prob-
ability distribution PG. Then fake yadv and real instance x
are fed to discriminator D that tries to differentiate fake from
real instances. From the classification procedure of yadv , the
discriminator produces a label that indicates whether yadv be-
longs to the Pdata (real input) or PG distribution (adversarial
input).

In a nutshell, generator G is trained in a way that maxi-
mizes the probability of discriminator D being deceived. In
this case, GANs manage well enough to generate instances,
almost identical to the original samples. In adversarial at-
tack settings, GANs aim at misleading a pretrained classifier,



f : Y → C in a given dataset using a generator that trans-
forms the input image. In particular, in the work of [14] the
generator outputs the noise which is being added to the input
image generating the adversarial attack in an efficient way.
Training in a black box-attack context, losses are based on
the input and output of the classifier without any knowledge
of the inner function of the classifier. Thus the Loss function
is defined as follows:

Lf
adv = Exℓf (G(x), t) (4)

L = Lf
adv + αLGAN + βLhinge, (5)

where α and β control the relative importance of each objec-
tive. Note that LGAN here is used to encourage the perturbed
data to appear similar to the original data x, while Lf

adv is
leveraged to generate adversarial examples, optimizing for the
high attack success rate.

3. PROPOSED FRAMEWORK

Fig. 1. Architecture of the proposed AdvRevGAN model.

3.1. Reversible Generative Adversarial Networks

Inspired by Image-to-image translation (I2I), our work con-
siders the case where X is the clean image domain and Y is
the adversarial image domain. The adversarial image domain
can be obtained implicitly, by training a generator to produce
adversarial examples, or explicitly, by using any adversarial
attack. Then, our goal is to create an image-to-adversarial
image translation model which is approximately invertible by
design. The image-to-image translation aims at transferring
images from a source to a target domain while retaining con-
tent representations [15] [16]. According to [17], the goal
is to find the appropriate mapping between two given do-
mains X and Y , while minimizing the corresponding loss
functions for unpaired training data. To this end, two map-
pings G : X → Y and G−1 : Y → X are learned, following
the cycle-consistency.

In a similar fashion, we create a generator G : X → Y
such that G(xi) = yadv

i in order to generate adversarial ex-
amples such that f(yadv

i ) ̸= f(xi) (untargeted attack). Also
we design an “inverse” generator, G−1 : Y → X . Then, G−1

is another architecture that produces xrec
i as approximations

of xi. Figure 1 depicts the architecture of our model.
The forward mapping of generator G and the backward

one of G−1 are broken down into three components. X is
the original image domain, Yadvreal

is the original adversarial
image domain while Yadv is the domain of adversarial gen-
erated images that are produced by G. We associate a fea-
ture space X̃ and Ỹ in higher dimensions for each domain
respectively. Mappings between original and adversarial im-
age space are individual and non-invertible. More specifi-
cally, for real image space X , we use an encoder EncX :
X → X̃ that extracts the image features of X , lifting the im-
age into a higher dimensionality feature space and a decoder
DecXrec : X̃ → Xrec that switch the image back to a lower
image space in same dimensions as the initial. We follow the
same procedure for generated adversarial image domain Yadv

using Enc
Y adv

: Yadv → Ỹ and DecY adv : Ỹ → Yadv .
Between feature spaces, we have an invertible core such

that C : X̃ → Ỹ and C−1 : Ỹ → X̃ . As a result, we
demonstrate the full mappings that are:

(6)G(X) = DecY adv ◦ C ◦ EncX(X)

(7)G−1(Y adv) = DecXrec ◦ C−1 ◦ Enc
Y adv

(Y adv),

where ◦ denotes the composition of EncX , C, DecY adv for
function G and Enc

Y adv
, C−1,DecXrec for function G−1.

Also for each image space, X and Yadv we use domain-
specific discriminators DX and DY adv for training with the
adversarial loss.

We first define loss for discriminator DX to ensure that xi

and xrec
i are close.

LDX
(G,G−1, DX) = mse(D(x), p(x)), (8)

where mse is the mean squared error and:

p(x) =

{
0, x ∈ X
1, x ̸∈ X .

Similarly we encourage the discriminator DY adv that yadv

and x are indistinguishable with the following loss function:

LD
Y adv

(G−1, G,DY adv) = mse(D(yadv), p(yadv)), (9)

where:

p(yadv) =

{
0, yadv ∈ Y
1, yadv ̸∈ Y.

We define L1 loss for the generator to ensure that xi, xrec
i

follow the same distribution. Additionally we introduce the
Lcycle loss in order to measure the distance between xi and
xrec
i :



Lcycle(G
−1, G,x) = ||G−1(G(x))− x||1. (10)

Besides maintaining visual similarity, the generator net-
work must also derive the actual adversarial examples. For
these examples, we demand that they are misclassified by the
classifier, formulating a loss function, that exploits some ad-
versarial attack, e.g.,:

Ladv = Lf (f(G(x), t), (11)

where Lf is a classification loss function, f(·) is a classifier
and t is a target attack class index, that could be different
from the original sample label. In fact, any adversarial attack
can be employed. In our experiments, we have employed the
C&W [18] loss function has been employed.

Furthermore, we ensure that the perturbation on the image
does not alternate entirely with the original image. For that
reason, we define perturbation loss as follows

Lpert = Ex[||yadv − x||1]. (12)

Last, the two losses Ladv and Lpert constitute the loss
functions for training G and G−1.

4. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
AdvRevGAN approach. As a baseline method for adversarial
generation we have employed the SGD-UAP method, while
for the reversible ones, MUAT is used. All methods have
been implemented in Python using Pytorch. The training pa-
rameters used in AdvRevGAN and MUAT are the number of
epochs, the training samples, and the learning step for the
Adam optimizer [19]. For the SGD-UAP method, the pa-
rameters are more and consist of the number of epochs, the
upper threshold for Lp norm of the attack, the pixel clamp-
ing value of the attack, the training samples and the learning
step for SGD optimizer. As an evaluation dataset, we have
employed MNIST [20], which is commonly used for evalu-
ating adversarial attacks. Although it is a very easy dataset
for classification, this is what makes it challenging for adver-
sarial attacks, since adversarial attacks must generate more
noise in order to fool the classifier. This way, generating the
inverse image is also more difficult. Yet, due to its simplicity,
the number of trainable parameters remains low for both the
proposed and the competing methods, making the results eas-
ily reproducible. Adversarial attacks for both datasets were
performed using the Carlini-Wagner L2 method [18].

Table 1. Comparison results on MNIST dataset
Accuracy

(initial dataset )
Accuracy

(attacked dataset) MSE(x, yadv) SSIM(x, yadv)

AdvRevGAN 98.4% 0.09% 0.017 0.723
MUAT 98.4% 0.01% 0.056 0.384
SGD-UAP 98.4% 0.07% 0.106 0.300

Fig. 2. Adversarial examples and reconstructed images on
MNIST Dataset. The first column depicts original images xi,
the next three columns are the corresponding adversarial ex-
amples yi

adv generated by the proposed method, MUAT and
UAP respectively while above them demonstrated the wrong
class that predicted by the model. In the last two columns
are demonstrated the reconstructed images xi

rec derived by
MUAT and our proposed method respectively.

Table 2. AdvRevGAN results on MNIST dataset
Accuracy

(initial attacked
dataset)

Accuracy
(classification

xrec)
MSE(x, y) SSIM(x, y) MSE(x, xrec) SSIM(x, xrec)

AdvRevGAN 98.4% 90.7% 0.019 0.723 0.010 0.949

The results obtained are analyzed in terms of the Mean
Squared Error (MSE) and the Structural Similarity Index
Measure (SSIM), which provide insights into the quality of
the adversarial examples generated and the reconstructed im-
ages produced by the different methods. For implementing
the experiments with the MNIST dataset, a LeNet-5 classifier
was trained initially on the training set and evaluated on its
test set. The accuracy of the classifier that was attacked in our
experiments was 98.4%.

Table 1 shows a comparison of the proposed method,
SGD-UAP, and MUAT in terms of adversarial attack genera-
tion. As can be observed, the proposed method produces less
noisy perturbations when compared to other methods, while
it remains effective in reducing classification accuracy, as
well. Table 2 presents the results of our proposed method, in
terms of the reconstruction quality. As can be observed, the
classification accuracy in the reconstructed data is restored
to 90.7%, while the structural similarity of the reconstructed
samples with the original ones is very high, while the MSE
of the reconstructed data when compared to the original data
is very low. Finally, Figure 2 shows a qualitative evaluation
of the competing methods. As can be observed, the proposed



method produces adversarial examples that look very similar
to the original data while it is able to reconstruct the original
data sufficiently well.

5. CONCLUSIONS AND FUTURE WORK

A reversible adversarial attack method has been described,
that produces a reversible mapping function that uniquely
maps given input images into an adversarial domain, where
its inverse can almost reconstruct the original input. The pro-
posed method allows the generation of untargeted adversarial
examples that are also reversible for different dataset com-
plexities using generative adversarial networks (GANs). The
proposed AdvRevGAN generates adversarial attacks with
less noise when compared to legacy adversarial attack meth-
ods. Last but not least, the transformation cannot be obtained
by third parties, since it is non-linear, and requires access to
the neural network architecture and parameters.

According to recent research [21], diffusion models are
suggested as a promising alternative to GANs for generating
diverse and realistic samples as they use a diffusion process to
iteratively transform a noise vector into a sample that matches
the data distribution, and they have shown to be more sta-
ble and easier to train than GANs. Their ability to capture
complex multi-modal distributions makes them a viable al-
ternative for generating synthetic data in scenarios where la-
beled data is limited or costly to obtain. Future work will
consider extending the proposed architecture to also accom-
modate differential privacy constraints in the adversarial at-
tack optimization problem using more complex datasets and
include the diffusion models in our experiments.
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