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ABSTRACT

Power line segmentation is a critical component of UAV in-
telligent inspection systems to ensure the safe and reliable
operation of power grids. For challenging-to-label tasks like
this, simulators can efficiently generate large amounts of la-
beled data. In this work, a large-scale annotated synthetic
power lines dataset generated utilizing the unity game en-
gine and the unity perception package1. To address domain
shift between real and synthetic domain, input-level adapta-
tion performed. Additionally, a new power line segmentation
loss developed to mitigate the effects of unbalanced pixel dis-
tributions among power lines and background. Experiments
demonstrate that our approach achieves state-of-the-art per-
formance on power line segmentation task.

Index Terms— Power line segmentation, Synthetic
dataset, Domain adaptation, UAVs inspection, Aerial images

1. INTRODUCTION

Transmission line networks have almost expanded every-
where due to rising electrical consumption. To ensure the
safety of low-altitude flights, which are seriously affected
by the widely spread power network, like those performed
by Unmanned Aerial Vehicles (UAVs) is necessary to recog-
nize power lines beforehand. Particularly, low-altitude flight
accidents involving electrical lines might cause significant
damage to those lines, resulting in widespread power outages
and affecting transmission line reliability. Traditional meth-
ods for inspecting electricity networks that have been utilized
for decades include visual examination by human inspectors,
and helicopter-assisted inspection. The major restriction of
employing the aforementioned methods is that it is relatively
slow, expensive, labor-intensive, expose inspectors to haz-
ardous working circumstances, and is also restricted by the
inspectors visual observation skills.

Power line segmentation is a crucial component of the
UAVs intelligent power line inspection process for power-
grid security and low-altitude safety. The effectiveness of
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segmentation methods is dependent on the availability of la-
beled training data. Collecting and annotating large datasets
for each new task and area is costly, time-consuming, labor-
intensive, and error-prone. For example annotation and anno-
tation quality evaluation for just a single image in the well-
known Cityscapes [1] dataset took over 1.5 hours. The com-
plexity and diversity of natural scenes also contribute to the
difficulty of image segmentation task.

Building a synthetic dataset with a rendering engine is
extremely effective because it includes automatically gener-
ated annotations and, in some cases, is required due to the
enormous amount of labor-intensive time required to collect
and label a real-world dataset of this scale. In this work, a
large-scale annotated synthetic dataset with power lines gen-
erated. Nevertheless, due to the domain shift, training the
model with simulated data doesn’t always yield satisfactory
results when applied to real data. Domain Adaptation (DA)
has been recently used in the semantic segmentation field to
bridge the distribution gap between the real domain and the
synthetic domain, hence boosting the generalization capabil-
ities of learned models on real data. Our framework explore
the idea that performance can improved without additional
training beyond the core task of semantic segmentation by
simply aligning low-level statistics among synthetic and real
distributions.

The following are the major contributions of this work: i)
a large-scale synthetic power lines dataset. To the best of our
knowledge, this is the first synthetic dataset including power
lines that will be made publicly available, and it constitutes
a significant contribution for both the scientific community
and industry. ii) a new DA framework for power line seg-
mentation, particularly input-level adaptation performed uti-
lizing a lightweight fourier-based image-to-image translation
strategy. This strategy outperforms well-known domain ad-
versarial adaptation strategies in terms of training speed, ease
of implementation, and memory. iii) a weighted power line
segmentation loss function combining focal loss and dice loss
was developed to mitigate the impact of the unbalanced dis-
tribution of pixels between power lines and background on
segmentation accuracy. iv) The proposed framework achieve
SOTA performance in the task of power line segmentation
when applied to the well-known TTPLA power lines dataset
[2].



2. RELATED WORK

Power line Segmentation: Traditional approaches identify
power lines primarily by recognizing power line features [3]
or objects associated [4] with power lines based on the as-
sumption that power lines are either straight lines or poly-
nomial curves that are parallel to each other. Such methods
begin by distinguishing potential power line pixels from the
background utilizing edge detector, then they employ hough
transformation [5], followed by previous knowledge to refine
the detected outcomes. Most of the previous approaches rely
on complex parameter adjustments, making them less stable
in practice.

Since Deep Neural Networks (DNNs) can automatically
learn useful features and enable an end-to-end solution, re-
searchers have started to build power line inspection systems
leveraging DL. In [6] authors proposed an attentional convo-
lutional network for pixel-level, which consists of an encoder-
decoder information fusion module as well as an attention
module. A fast single-shot line segment detector trained with
artificially generated power line images proposed in [7]. In
[8] a network for pixel-wise straight and curved power lines
was presented. They utilized the edge attention fusion module
and a high pass block to extract semantic and spatial data to
enhance the detection result along the boundaries. In [9] a ap-
proach based on the edge structure and scene constraints was
proposed. In [10] an approach based on Generative Adversar-
ial Networks (GANs) is described for segmenting power lines
from aerial images.
Domain Adaptation: Adaptation methods can be applied
at several levels, including the input-image level, internal-
feature representations, and output-level. Recently, the major-
ity of approaches have relied on adversarial learning [11] en-
abling pixel or feature-level adaptations or self-training [12]
through the refinement of pseudolabels. In adversarial learn-
ing, the core issue is the necessity of learning multiple net-
works in addition to the target one, and the challenge of stabi-
lizing adversarial training, but also the self-training approach
that is self-referential, demands careful design to avoid error
propagation.

Image-to-image translation [13] approaches have been
also investigated, typically they transfer an image color,
lighting, and other stylization characteristics from one do-
main to the other, or even from both domains to just an
neutral domain. To that goal, a variety of GANs have been
developed for transferring image styles while modifying im-
age structures as little as possible. Nevertheless, GAN-based
translation models operates in spatial space, where image
styles as well as image structures are intimately connected,
eventually modifying image structures in an undesirable way.

3. INTRODUCED SYNTHETIC DATASET

There are two works with artificial datasets containing power
lines [7],[14], but both of them aren’t very photorealistic

and are not publically available. The previous issues served
as inspiration for this work. First and foremost, there is a
demand for a publicly available large-scale Synthetic Power
Lines (SPL) dataset consisting of thousands of RGB images.
Moreover, this dataset can expand at any time, at any desired
resolution, without requiring the sensor to be adjusted or the
rebuilding of any previously used environments, and it’s also
considerably more photorealistic as shown in figure 1. The

Fig. 1: Images from the synthetic power lines dataset captured
in various environments, angles, and camera distances.

SPL dataset was generated utilizing unity, one of the most
popular gaming engines in the world, and unity’s perception
package. The introduced dataset containing aerial images of
power lines in every possible combination of different loca-
tions, lighting conditions, tilts, angles, FOVs. All power lines
in SPL are recorded from several viewpoints, including front
view, top view, and side view. As a result, there are almost
no occlusions and UAVs can fly in any direction without
concerned about detection accuracy. Power lines must be cor-
rectly detected against backgrounds, the SPL includes a large
number of images of power lines with noisy backgrounds,
making the process of extracting power lines challenging and
close to a real-world scenario. The SPL dataset statistics
are summarized in Table 1, and were divided into 70% for
training, 10% for validation, and 20% for testing.

Table 1: SPL Dataset Statistics.

Resolution World 1 World 2 Total
Images

Train
set

Validation
set

Test
set

1,920×1,080 5,770 7,080 12,850 8,995 1,285 2,570

4. PROPOSED FRAMEWORK

Fourier-based Adaptation: Although the majority of inter-
domain low-level statistical differences lack any semantic im-
portance, they are likely to cause an unexpected performance
drop on target samples, even though the source and target im-
ages share a higher level of semantic similarity in terms of
scene structure and content. This is important as it seems
that DNNs don’t really transfer well between various low-
level statistics. Inspired by [15] we employ a Fourier-based
translation technique at the image input level by swapping



Fig. 2: The proposed framework consists of two components: a) an input-level DA module that employs a Fourier-based image
translation strategy, b) a high-performance semantic segmentation architecture trained with a power line segmentation loss.

a synthetic image’s amplitude spectrum with that of a ran-
dom real image. This method, doesn’t employ discriminators
that align pixel/feature-level distributions or image-to-image
translation networks to generate training images. Fourier DA
utilized as a separate step and doesn’t at all require any train-
ing to achieve domain alignment, instead relying on a simple
Fourier Transform and its inverse.

In DA, given a source (synthetic) dataset Ds{(xs
i , y

s
i )}

Ns
i=1

and a target (real) dataset Dt = {(xt
i, y

t
i)}

Nt
i=1, where xs, xt ∈

RH×W×3 is a RGB image, and ys, yt ∈ RH×W is the seg-
mentation map associated with xs, xt accordingly. Utilizing
Fourier-based DA, we aim to bridge the domain discrepancy
between the two datasets and enhance performance on the
DT . The amplitude and phase components of the Fourier
Transform are defined as:

Π (x)(k, l) =
√
R2 (x)(k, l) + I2 (x)(k, l) (1)

Φ (x)(k, l) = arctan
[ I (x)(k, l)

R (x)(k, l)

]
(2)

where the real and imaginary components of the Fourier
Transform F (x) are represented by R (x) and I (x), re-
spectively. Assuming that the image’s center is (0, 0), we
indicate with M (β) a mask whose value is zero everywhere
but not in the region where β ∈ [0, 1]. The altered spectral
representation of xs, indicated as X (xs, xt), in which the
low frequency component of the amplitude of source image
Π (xs) is swapped with that of the target image Π (xt), can
be formalized as:

X (xs, xt) = M (β) ·Π (xt) + (1−M (β)) ·Π (xs) (3)

Fourier-based adaptation formalized given a set of randomly
sampled images xs, xt as:

xs→t = F−1 (
[
X (xs, xt),Φ (xs)

]
) (4)

Where the altered spectral representation X (xs, xt) is pro-
jected back to the image xs→t while keeping the phase com-
ponent Φ (xs) unaltered, whose content is similar to xs, but
whose appearance is similar to a sample from DT .
Segmentation Architecture: DeeplabV3+ [16], the most

recent DeepLab family version that combines a wide range
of strategies such as skip connections, dilated convolution,
global context, and robust backbone network, was selected
in this work. This high-quality segmentation model has an
encoder-decoder architecture with dilated separable convo-
lution built of depthwise and pointwise convolution. As an
encoder, DeeplabV3+ employed the DeepLabV3 [17]. The
segmentation architecture, as shown in figure 2, was trained
using the proposed power line segmentation loss.
Power line segmentation loss: Power line inspection is
challenging due to poor visual appearance and complex back-
grounds. Dice loss [18] considers both local and global loss
information, has no trouble learning from classes with less
spatial representation inside an image, and focuses mostly on
mining the foreground during the training phase. Dice loss,
formulated as follows:

Ldice = 1−
2 ·

∑H·W
i=1 pi · gi∑H·W

i=1 p2i +
∑H·W

i=1 g2i + ϵ
(5)

where pi is the i-th pixel’s estimated probability and gi is the
i-th pixel’s ground truth. However, it only solves the prob-
lem among foreground and background while ignoring an-
other imbalance among easy and hard examples.

To address this restriction of dice loss, we employ focal
loss [19], which emphasizes on examples where the model
is inaccurate rather than examples where it can reliably esti-
mate, allowing predictions on difficult examples to get bet-
ter over time rather than the model being overconfident with
easy ones. This is accomplished by a process known as down
weighting. Focal loss, formulated as follows:

Lfocal =

{
−α ·

∑H·W
i=1 (1− pi)

γ · log(pi), gi = 1

−(1− α) ·
∑H·W

i=1 pγi · log(1− pi), gi = 0

(6)
The weight vector α = [0.25, 075] for background and power
lines class, respectively. The higher the value of focusing pa-
rameter γ, the greater the attention paid to misclassified hard
examples (power lines) and the smaller the loss propagated
from simple examples (background), based on our experi-
ments, we set γ = 3.

In this work, in order to enhance the performance of
power line segmentation on aerial images we introduced a



weighted loss function for power line segmentation that com-
bines focal loss and dice loss to benefit from the advantages
of both. During training, focal loss is utilized to encourage
the network to pay more attention to challenging examples
like power lines, and dice loss is used to help the network im-
prove its exploitation of foreground regions as well as learn
proper boundary representations. When the loss functions are
combined, we get our complete learning objective as:

Ltotal = λ1 · Lfocal + λ2 · Ldice (7)

where λ1, λ2 regulates the compromise between the dice loss
and the focal loss. Based on the results of our experimental
analysis, λ1, λ2 are both set equal to 0.5.

5. EXPERIMENTAL EVALUATION

5.1. Datasets and Implementation Details

There aren’t many publically available datasets for power
lines. For experimental evaluation, the SPL dataset presented
in this work and the well-known real-world TTPLA dataset
[2] were employed. We utilized 905 images from the TTPLA
dataset for training, 110 images for validation, and 217 im-
ages for testing. We resized the images from both datasets to
1024× 1024.

The ResNet-50 backbone pre-trained on ImageNet was
utilized for feature extraction. To optimize our network, we
utilize SGD, using an initial learning rate of 0.01, momentum
of 0.9, and weight decay of 4e-5. The ”poly” learning rate
policy is employed to control how the learning rate decays
during training. The model was trained on a single NVIDIA
RTX 2080 TI GPU with 11GB of VRAM for 100 epochs.
The output stride parameter set to 8, the ASPP module’s out-
put channels were set to 256, and the dilation rate in the ASSP
module is set to [1, 12, 24, 36].

Table 2: Datasets and Loss functions Experiments.

Training
Dataset

SPL
mIOU (%)

TTPLA
mIOU (%) Loss function

Val Test Val Test Standard
CE

Power Line
Segmentation

TTPLA 1.60 2.03 47.92 44.51
√

SPL 56.66 55.14 18.93 17.32
√

TTPLA & SPL 50.05 49.70 53.11 52.83
√

TTPLA & SPL 51.89 50.34 57.58 55.24
√

5.2. Evaluation

Baselines: Table 2, second row, demonstrates that training
with just the SPL dataset decreases TTPLA performance
compared to training with just the TTPLA dataset, Table 2,
first row. This happens as a result of the domain shift from
synthetic to real. However, when both the TTPLA and SPL
datasets are combined, we can observe in the third row that
there is a considerable improvement in TTPLA, Table 2, first
row, particularly +5, 19% on the val set and +8, 32% on the

test set.
Loss function: We compare the power line segmentation loss
introduced in these experiments to the standard CE loss used
in semantic segmentation. The power line segmentation loss
improved performance is +4.47% in the validation set and
+2.41% in the test set, as shown in Table 2.
Domain adaptation: We tune β until artifacts in the trans-
formed images are visible, which occurs when β exceeds
0.25. According to our findings, an intermediate value for
β = 0, 01 yields the greatest outcomes (58.47% in the
TTPLA test set). We gain +2.10% on the validation set
and +3.23% on the test set with input-level DA, as shown in
Table 4.
Comparison with SOTA method on TTPLA dataset: To
ensure fairness, the same ResNet-6 backbone and 512 × 512
resolution are chosen. Based on our previous results, we ap-
ply fourier-based adaptation with β = 0, 01. On the TTPLA
test set, our method outperforms the recently presented PL-
GAN architecture [10] by +3.82%, as shown in Table 5.

Table 3: Input image level Fourier-based DA Experiments.

Domain Adaptation TTPLA mIOU
Val Test

Without DA 57.58 % 55.24 %
Fourier DA (β = 0, 001) 57.73 % 56.20 %
Fourier DA (β = 0, 01) 58.39 % 58.47 %
Fourier DA (β = 0, 05) 58.98 % 57.67 %
Fourier DA (β = 0, 25) 59.68 % 56.09 %

Table 4: Comparison on TTPLA dataset.

Method Backbone
Network

Image
Resolution

TTPLA
Test mIOU

PLGAN [10] ResNet-6 512x512 53.30 %
Ours ResNet-6 512x512 57.12 %

6. CONCLUSIONS

In this work, a novel large-scale synthetic dataset for train-
ing and testing power line segmentation approaches gener-
ated, reducing the need to gather and label a large number
of real-world images. Furthermore, a novel power line seg-
mentation DA framework that can close the gap produced by
the domain shift between the synthetic and real image pre-
sented, and it is a highly promising direction based on our
experimental results. Our approach is motivated by the fact
that low-level spectrum can differ significantly without im-
pacting perception of higher-level semantics. In addition, a
new weighted loss function proposed that combines focal loss
and dice loss to improve the performance of power line seg-
mentation on aerial images. Finally, our framework achieves
state-of-the-art performance for power line segmentation task
on the well-known real-world TTPLA dataset. We hope our
work can shed some lights into the community.
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